[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v52y2013icp501-512.html
   My bibliography  Save this article

Dutch sectoral energy intensity developments in international perspective, 1987–2005

Author

Listed:
  • Mulder, Peter
  • de Groot, Henri L.F.
Abstract
This paper makes use of a new dataset to investigate energy intensity developments in the Netherlands over the period 1987–2005. The dataset allows for a comparison with 18 other OECD countries. A key feature of our analysis is that we combine a cross-country perspective with a high level of sectoral detail, covering 49 sectors. Particularly innovative is our evaluation of energy intensity developments in a wide range of Service sectors. We find that across sectors, energy intensity levels in the Netherlands on average decreased only marginally, and increased in Services. This performance is in general worse than the OECD average, especially between 1987 and 1995. Changes in the sectoral composition of the economy play an important role in explaining aggregate trends. In the Manufacturing sector, about half of the efficiency improvements were undone by a shift towards a more energy-intensive industry structure. In contrast, in the Service sector efficiency decreased, which was undone for about one third by a shift towards a less energy-intensive sector structure.

Suggested Citation

  • Mulder, Peter & de Groot, Henri L.F., 2013. "Dutch sectoral energy intensity developments in international perspective, 1987–2005," Energy Policy, Elsevier, vol. 52(C), pages 501-512.
  • Handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:501-512
    DOI: 10.1016/j.enpol.2012.09.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512008543
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.09.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter Mulder & Henri de Groot, 2003. "International comparison of sectoral energy- and labour-productivity performance; stylised facts and decomposition of trends," CPB Discussion Paper 22, CPB Netherlands Bureau for Economic Policy Analysis.
    2. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    3. Fisher-Vanden, Karen & Jefferson, Gary H. & Liu, Hongmei & Tao, Quan, 2004. "What is driving China's decline in energy intensity?," Resource and Energy Economics, Elsevier, vol. 26(1), pages 77-97, March.
    4. Mairet, Nicolas & Decellas, Fabrice, 2009. "Determinants of energy demand in the French service sector: A decomposition analysis," Energy Policy, Elsevier, vol. 37(7), pages 2734-2744, July.
    5. Abay Mulatu & Reyer Gerlagh & Dan Rigby & Ada Wossink, 2010. "Environmental Regulation and Industry Location in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(4), pages 459-479, April.
    6. Lescaroux, François, 2008. "Decomposition of US manufacturing energy intensity and elasticities of components with respect to energy prices," Energy Economics, Elsevier, vol. 30(3), pages 1068-1080, May.
    7. Peter Mulder & Henri Groot, 2007. "Sectoral Energy- and Labour-Productivity Convergence," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(1), pages 85-112, January.
    8. Dale W. Jorgenson, 1984. "The Role of Energy in Productivity Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 11-26.
    9. Miketa, Asami & Mulder, Peter, 2005. "Energy productivity across developed and developing countries in 10 manufacturing sectors: Patterns of growth and convergence," Energy Economics, Elsevier, vol. 27(3), pages 429-453, May.
    10. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    11. Phylipsen, G. J. M. & Blok, K. & Worrell, E., 1997. "International comparisons of energy efficiency-Methodologies for the manufacturing industry," Energy Policy, Elsevier, vol. 25(7-9), pages 715-725.
    12. Cleveland, Cutler J. & Kaufmann, Robert K. & Stern, David I., 2000. "Aggregation and the role of energy in the economy," Ecological Economics, Elsevier, vol. 32(2), pages 301-317, February.
    13. Ramírez, C.A. & Patel, M. & Blok, K., 2005. "The non-energy intensive manufacturing sector," Energy, Elsevier, vol. 30(5), pages 749-767.
    14. Farla, Jacco C.M & Blok, Kornelis, 2000. "The use of physical indicators for the monitoring of energy intensity developments in the Netherlands, 1980–1995," Energy, Elsevier, vol. 25(7), pages 609-638.
    15. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
    16. Park, Se-Hark & Dissmann, Bruno & Nam, Kee-Yung, 1993. "A cross-country decomposition analysis of manufacturing energy consumption," Energy, Elsevier, vol. 18(8), pages 843-858.
    17. Mary O'Mahony & Marcel P. Timmer, 2009. "Output, Input and Productivity Measures at the Industry Level: The EU KLEMS Database," Economic Journal, Royal Economic Society, vol. 119(538), pages 374-403, June.
    18. Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), 2011. "Improving Energy Efficiency through Technology," Books, Edward Elgar Publishing, number 3830.
    19. Gale A. Boyd and Joseph M. Roop, 2004. "A Note on the Fisher Ideal Index Decomposition for Structural Change in Energy Intensity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 87-102.
    20. Corden, W Max & Neary, J Peter, 1982. "Booming Sector and De-Industrialisation in a Small Open Economy," Economic Journal, Royal Economic Society, vol. 92(368), pages 825-848, December.
    21. Ang, B.W. & Liu, F.L. & Chung, Hyun-Sik, 2004. "A generalized Fisher index approach to energy decomposition analysis," Energy Economics, Elsevier, vol. 26(5), pages 757-763, September.
    22. Miketa, Asami, 2001. "Analysis of energy intensity developments in manufacturing sectors in industrialized and developing countries," Energy Policy, Elsevier, vol. 29(10), pages 769-775, August.
    23. de Boer, Paul, 2009. "Generalized Fisher index or Siegel-Shapley decomposition?," Energy Economics, Elsevier, vol. 31(5), pages 810-814, September.
    24. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    25. Magnus, Jan R, 1979. "Substitution between Energy and Non-Energy Inputs in the Netherlands, 1950-1976," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 20(2), pages 465-484, June.
    26. Abay Mulatu & Reyer Gerlagh & Dan Rigby & Ada Wossink, 2009. "Environmental Regulation and Industry Location," Working Papers 2009.2, Fondazione Eni Enrico Mattei.
    27. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    28. Gerlagh, Reyer & Mathys, Nicole A., 2011. "Energy Abundance, Trade and Industry Location," Sustainable Development Papers 99639, Fondazione Eni Enrico Mattei (FEEM).
    29. Nilsson, Lars J., 1993. "Energy intensity trends in 31 industrial and developing countries 1950–1988," Energy, Elsevier, vol. 18(4), pages 309-322.
    30. Ramírez, C.A. & Patel, M. & Blok, K., 2006. "How much energy to process one pound of meat? A comparison of energy use and specific energy consumption in the meat industry of four European countries," Energy, Elsevier, vol. 31(12), pages 2047-2063.
    31. Zhang, F. Q. & Ang, B. W., 2001. "Methodological issues in cross-country/region decomposition of energy and environment indicators," Energy Economics, Elsevier, vol. 23(2), pages 179-190, March.
    32. Hillard G. Huntington, 2010. "Structural Change and U.S. Energy Use: Recent Patterns," The Energy Journal, , vol. 31(3), pages 25-40, July.
    33. Eichhammer, Wolfgang & Wilhelm, Mannsbart, 1997. "Industrial energy efficiency : Indicators for a European cross-country comparison of energy efficiency in the manufacturing industry," Energy Policy, Elsevier, vol. 25(7-9), pages 759-772.
    34. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    35. Peter Mulder, 2005. "The Economics of Technology Diffusion and Energy Efficiency," Books, Edward Elgar Publishing, number 3434.
    36. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    37. Ramirez, C.A. & Blok, K. & Neelis, M. & Patel, M., 2006. "Adding apples and oranges: The monitoring of energy efficiency in the Dutch food industry," Energy Policy, Elsevier, vol. 34(14), pages 1720-1735, September.
    38. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    39. Taylor, Peter G. & d'Ortigue, Olivier Lavagne & Francoeur, Michel & Trudeau, Nathalie, 2010. "Final energy use in IEA countries: The role of energy efficiency," Energy Policy, Elsevier, vol. 38(11), pages 6463-6474, November.
    40. Richard B. Howarth & Lee Schipper, 1991. "Manufacturing Energy Use in Eight OECD Countries: Trends through 1988," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 15-40.
    41. Sue Wing, Ian, 2008. "Explaining the declining energy intensity of the U.S. economy," Resource and Energy Economics, Elsevier, vol. 30(1), pages 21-49, January.
    42. Unander, Fridtjof & Karbuz, Sohbet & Schipper, Lee & Khrushch, Marta & Ting, Michael, 1999. "Manufacturing energy use in OECD countries: decomposition of long-term trends," Energy Policy, Elsevier, vol. 27(13), pages 769-778, November.
    43. Neelis, Maarten & Ramirez-Ramirez, Andrea & Patel, Martin & Farla, Jacco & Boonekamp, Piet & Blok, Kornelis, 2007. "Energy efficiency developments in the Dutch energy-intensive manufacturing industry, 1980-2003," Energy Policy, Elsevier, vol. 35(12), pages 6112-6131, December.
    44. David Dollar & Edward N. Wolff, 1993. "Competitiveness, Convergence, and International Specialization," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262041359, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerbert Hebbink & Laurien Berkvens & Maurice Bun & Henk van Kerkhoff & Juho Koistinen & Guido Schotten & Ad Stokman, 2018. "The price of transition: an analysis of the economic implications of carbon taxing," DNB Occasional Studies 1608, Netherlands Central Bank, Research Department.
    2. Diederik Dicou & Saskia van Ewijk & Jan Kakes & Martijn Regelink & Guido Schotten, 2016. "Time for Transition - an exploratory study of the transition to a carbon-neutral economy," DNB Occasional Studies 1402, Netherlands Central Bank, Research Department.
    3. Grossi, Luigi & Mussini, Mauro, 2018. "A spatial shift-share decomposition of electricity consumption changes across Italian regions," Energy Policy, Elsevier, vol. 113(C), pages 278-293.
    4. Hardt, Lukas & Owen, Anne & Brockway, Paul & Heun, Matthew K. & Barrett, John & Taylor, Peter G. & Foxon, Timothy J., 2018. "Untangling the drivers of energy reduction in the UK productive sectors: Efficiency or offshoring?," Applied Energy, Elsevier, vol. 223(C), pages 124-133.
    5. van Megen, Bram & Bürer, Meinrad & Patel, Martin K., 2019. "Comparing electricity consumption trends: A multilevel index decomposition analysis of the Genevan and Swiss economy," Energy Economics, Elsevier, vol. 83(C), pages 1-25.
    6. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2013. "Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010," Energy, Elsevier, vol. 59(C), pages 743-753.
    7. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    2. Mulder, Peter & de Groot, Henri L.F. & Pfeiffer, Birte, 2014. "Dynamics and determinants of energy intensity in the service sector: A cross-country analysis, 1980–2005," Ecological Economics, Elsevier, vol. 100(C), pages 1-15.
    3. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    4. Peter Mulder, 2015. "International Specialization, Structural Change and the Evolution of Manufacturing Energy Intensity in OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    5. Peter Mulder & Henri L.F. de Groot, 2011. "Energy-Productivity Performance Across 14 OECD Countries: The Role of Energy-Extensive Sectors," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 3, Edward Elgar Publishing.
    6. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
    7. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2017. "Energy intensity and convergence in Swedish industry: A combined econometric and decomposition analysis," Energy Economics, Elsevier, vol. 62(C), pages 347-356.
    8. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    9. Miketa, Asami & Mulder, Peter, 2005. "Energy productivity across developed and developing countries in 10 manufacturing sectors: Patterns of growth and convergence," Energy Economics, Elsevier, vol. 27(3), pages 429-453, May.
    10. Zhang, Fan, 2013. "The energy transition of the transition economies: An empirical analysis," Energy Economics, Elsevier, vol. 40(C), pages 679-686.
    11. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    12. Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder, 2011. "Energy Efficiency and Technological Change," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 1, Edward Elgar Publishing.
    13. Peter Mulder & Henri de Groot, 2003. "International comparison of sectoral energy- and labour-productivity performance; stylised facts and decomposition of trends," CPB Discussion Paper 22, CPB Netherlands Bureau for Economic Policy Analysis.
    14. Dmitry Burakov, 2016. "Elasticity of Energy Intensity on a Regional Scale: An Empirical Study of International Trade Channel," International Journal of Energy Economics and Policy, Econjournals, vol. 6(1), pages 65-75.
    15. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
    16. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    17. Peter Mulder & Henri de Groot, 2003. "International comparison of sectoral energy- and labour-productivity performance; stylised facts and decomposition of trends," CPB Discussion Paper 22.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    18. Peter Mulder & Henri Groot, 2007. "Sectoral Energy- and Labour-Productivity Convergence," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(1), pages 85-112, January.
    19. Ang, B.W. & Xu, X.Y., 2013. "Tracking industrial energy efficiency trends using index decomposition analysis," Energy Economics, Elsevier, vol. 40(C), pages 1014-1021.
    20. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Combining physical and economic output data to analyse energy and CO2 emissions trends in industry," Energy Policy, Elsevier, vol. 49(C), pages 422-429.

    More about this item

    Keywords

    Energy intensity; Decomposition; Sectoral analysis;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • O5 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:501-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.