[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014198.html
   My bibliography  Save this article

Estimating the economic value of hydropeaking externalities in regulated rivers

Author

Listed:
  • Ruokamo, Enni
  • Juutinen, Artti
  • Ashraf, Faisal Bin
  • Haghighi, Ali Torabi
  • Hellsten, Seppo
  • Huuki, Hannu
  • Karhinen, Santtu
  • Kopsakangas-Savolainen, Maria
  • Marttila, Hannu
  • Pongracz, Eva
  • Romakkaniemi, Atso
  • Vermaat, Jan E.
Abstract
Hydropower is a flexible form of electricity generation providing both baseload and balancing power to accommodate intermittent renewables in the energy mix. However, hydropower also generates various externalities. This study investigates individuals' preferences for policies aiming to reduce short-term regulations (i.e., hydropeaking in regulated rivers) while accounting for associated externalities with a discrete choice experiment. This is the first valuation study focusing on hydropeaking that considers both negative and positive externalities. The results imply that most individuals prefer stronger restrictions on short-term regulations to mitigate local environmental impacts. Individuals especially value improvements in recreational use, fish stocks, and the ecological state. On the other hand, potential increases in CO2 emissions are linked with a clear disutility. The estimated benefits obtained from an improved state of the river environment due to such restrictions exceed the disutility caused by increased CO2 emissions. The results also reveal unobserved preference heterogeneity among individuals, which should be accounted for in the willingness-to-pay (WTP) estimation using a model specification with correlated utility coefficients. Overall, the findings can inform policy-makers and environmental managers on the economic value of hydropeaking externalities and further guide the sustainable management of rivers regulated for hydropower generation.

Suggested Citation

  • Ruokamo, Enni & Juutinen, Artti & Ashraf, Faisal Bin & Haghighi, Ali Torabi & Hellsten, Seppo & Huuki, Hannu & Karhinen, Santtu & Kopsakangas-Savolainen, Maria & Marttila, Hannu & Pongracz, Eva & Roma, 2024. "Estimating the economic value of hydropeaking externalities in regulated rivers," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014198
    DOI: 10.1016/j.apenergy.2023.122055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hess, Stephane & Train, Kenneth, 2017. "Correlation and scale in mixed logit models," Journal of choice modelling, Elsevier, vol. 23(C), pages 1-8.
    2. Amos Tversky & Daniel Kahneman, 1991. "Loss Aversion in Riskless Choice: A Reference-Dependent Model," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 1039-1061.
    3. Kosenius, Anna-Kaisa & Ollikainen, Markku, 2013. "Valuation of environmental and societal trade-offs of renewable energy sources," Energy Policy, Elsevier, vol. 62(C), pages 1148-1156.
    4. Torabi Haghighi, Ali & Ashraf, Faisal Bin & Riml, Joakim & Koskela, Jarkko & Kløve, Bjørn & Marttila, Hannu, 2019. "A power market-based operation support model for sub-daily hydropower regulation practices," Applied Energy, Elsevier, vol. 255(C).
    5. Frings, Oliver & Abildtrup, Jens & Montagné-Huck, Claire & Gorel, Salomé & Stenger, Anne, 2023. "Do individual PES buyers care about additionality and free-riding? A choice experiment," Ecological Economics, Elsevier, vol. 213(C).
    6. Juutinen, Artti & Kurttila, Mikko & Pohjanmies, Tähti & Tolvanen, Anne & Kuhlmey, Katharina & Skudnik, Mitja & Triplat, Matevž & Westin, Kerstin & Mäkipää, Raisa, 2021. "Forest owners' preferences for contract-based management to enhance environmental values versus timber production," Forest Policy and Economics, Elsevier, vol. 132(C).
    7. Mäntymaa, Erkki & Artell, Janne & Forsman, Jukka T. & Juutinen, Artti, 2023. "Is it more important to increase carbon sequestration, biodiversity, or jobs? A case study of citizens' preferences for forest policy in Finland," Forest Policy and Economics, Elsevier, vol. 154(C).
    8. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    9. Venus, Terese E. & Sauer, Johannes, 2022. "Certainty pays off: The public's value of environmental monitoring," Ecological Economics, Elsevier, vol. 191(C).
    10. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    11. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Hydropower externalities: A meta-analysis," Energy Economics, Elsevier, vol. 57(C), pages 66-77.
    12. Jones, Benjamin A. & Ripberger, Joseph & Jenkins-Smith, Hank & Silva, Carol, 2017. "Estimating willingness to pay for greenhouse gas emission reductions provided by hydropower using the contingent valuation method," Energy Policy, Elsevier, vol. 111(C), pages 362-370.
    13. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    14. Tabi, Andrea & Wüstenhagen, Rolf, 2017. "Keep it local and fish-friendly: Social acceptance of hydropower projects in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 763-773.
    15. Bergmann, Ariel & Hanley, Nick & Wright, Robert, 2006. "Valuing the attributes of renewable energy investments," Energy Policy, Elsevier, vol. 34(9), pages 1004-1014, June.
    16. Huuki, Hannu & Karhinen, Santtu & Böök, Herman & Ding, Chao & Ruokamo, Enni, 2021. "Residential solar power profitability with thermal energy storage and carbon-corrected electricity prices," Utilities Policy, Elsevier, vol. 68(C).
    17. Peter Boxall & Wiktor Adamowicz, 2002. "Understanding Heterogeneous Preferences in Random Utility Models: A Latent Class Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(4), pages 421-446, December.
    18. Andrea Klinglmair & Markus Gilbert Bliem & Roy Brouwer, 2015. "Exploring the public value of increased hydropower use: a choice experiment study for Austria," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 4(3), pages 315-336, November.
    19. Stephane Hess & John Rose, 2012. "Can scale and coefficient heterogeneity be separated in random coefficients models?," Transportation, Springer, vol. 39(6), pages 1225-1239, November.
    20. Hase, Bastian & Seidel, Christian, 2021. "Balancing services by run-of-river-hydropower at low reservoir amplitudes: Potentials, revenues and emission impacts," Applied Energy, Elsevier, vol. 294(C).
    21. Andrew Daly & Stephane Hess & Kenneth Train, 2012. "Assuring finite moments for willingness to pay in random coefficient models," Transportation, Springer, vol. 39(1), pages 19-31, January.
    22. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    23. Mariel, Petr & Artabe, Alaitz, 2020. "Interpreting correlated random parameters in choice experiments," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albrecht, Eerika & Isaac, Roman & Räsänen, Aleksi, 2024. "Legal and political arguments on aquatic ecosystem services and hydropower development – A case study on Kemi River basin, Finland," Ecosystem Services, Elsevier, vol. 67(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venus, Terese E. & Sauer, Johannes, 2022. "Certainty pays off: The public's value of environmental monitoring," Ecological Economics, Elsevier, vol. 191(C).
    2. Sara Sousa & Anabela Botelho & Lígia M. Costa Pinto & Marieta Valente, 2019. "How Relevant Are Non-Use Values and Perceptions in Economic Valuations? The Case of Hydropower Plants," Energies, MDPI, vol. 12(15), pages 1-18, August.
    3. Svenningsen, Lea S. & Thorsen, Bo Jellesmark, 2021. "The Effect of Gain-loss Framing on Climate Policy Preferences," Ecological Economics, Elsevier, vol. 185(C).
    4. Taro Ohdoko & Satoru Komatsu, 2023. "Integrating a Pareto-Distributed Scale into the Mixed Logit Model: A Mathematical Concept," Mathematics, MDPI, vol. 11(23), pages 1-22, November.
    5. Holte, Jon Helgheim & Kjaer, Trine & Abelsen, Birgit & Olsen, Jan Abel, 2015. "The impact of pecuniary and non-pecuniary incentives for attracting young doctors to rural general practice," Social Science & Medicine, Elsevier, vol. 128(C), pages 1-9.
    6. Meles, Tensay Hadush & Lokina, Razack & Mtenga, Erica Louis & Tibanywana, Julieth Julius, 2023. "Stated preferences with survey consequentiality and outcome uncertainty: A split sample discrete choice experiment," EfD Discussion Paper 23-16, Environment for Development, University of Gothenburg.
    7. Maaya, Leonard & Meulders, Michel & Vandebroek, Martina, 2021. "Joint analysis of preferences and drop out data in discrete choice experiments," Journal of choice modelling, Elsevier, vol. 41(C).
    8. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    9. Tensay Hadush Meles & Razack Lokina & Erica Louis Mtenga & Julieth Julius Tibanywana, 2023. "Stated Preferences with Survey Consequentiality and Outcome Uncertainty: A Split Sample Discrete Choice Experiment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(4), pages 717-754, December.
    10. Schmid, Basil & Jokubauskaite, Simona & Aschauer, Florian & Peer, Stefanie & Hössinger, Reinhard & Gerike, Regine & Jara-Diaz, Sergio R. & Axhausen, Kay W., 2019. "A pooled RP/SP mode, route and destination choice model to investigate mode and user-type effects in the value of travel time savings," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 262-294.
    11. Sardaro, Ruggiero & Faccilongo, Nicola & Roselli, Luigi, 2019. "Wind farms, farmland occupation and compensation: Evidences from landowners’ preferences through a stated choice survey in Italy," Energy Policy, Elsevier, vol. 133(C).
    12. Wang, Jian & Iversen, Tor & Hennig-Schmidt, Heike & Godager, Geir, 2020. "Are patient-regarding preferences stable? Evidence from a laboratory experiment with physicians and medical students from different countries," European Economic Review, Elsevier, vol. 125(C).
    13. Aravena, Claudia & Martinsson, Peter & Scarpa, Riccardo, 2014. "Does money talk? — The effect of a monetary attribute on the marginal values in a choice experiment," Energy Economics, Elsevier, vol. 44(C), pages 483-491.
    14. Kim, Junghun & Park, Stephen Youngjun & Lee, Jongsu, 2018. "Do people really want renewable energy? Who wants renewable energy?: Discrete choice model of reference-dependent preference in South Korea," Energy Policy, Elsevier, vol. 120(C), pages 761-770.
    15. Canessa, Carolin & Venus, Terese E. & Wiesmeier, Miriam & Mennig, Philipp & Sauer, Johannes, 2023. "Incentives, Rewards or Both in Payments for Ecosystem Services: Drawing a Link Between Farmers' Preferences and Biodiversity Levels," Ecological Economics, Elsevier, vol. 213(C).
    16. Lan Anh Nguyen & Manh-Hung Nguyen & Viet-Ngu Hoang & Arnaud Reynaud & Michel Simioni & Clevo Wilson, 2024. "Tourists’ preferences and willingness to pay for protecting a World Heritage site from coastal erosion in Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 27607-27628, November.
    17. Kim, Junghun & Seung, Hyunchan & Lee, Jongsu & Ahn, Joongha, 2020. "Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions," Energy Economics, Elsevier, vol. 86(C).
    18. Broberg, Thomas & Daniel, Aemiro Melkamu & Persson, Lars, 2021. "Household preferences for load restrictions: Is there an effect of pro-environmental framing?," Energy Economics, Elsevier, vol. 97(C).
    19. Schaak, Henning & Mußhoff, Oliver, 2018. "Public preferences for pasture landscapes and the role of scale heterogeneity," FORLand Working Papers 04 (2018), Humboldt University Berlin, DFG Research Unit 2569 FORLand "Agricultural Land Markets – Efficiency and Regulation".
    20. Gustavo Ahumada & Victor Iturra & Mauricio Sarrias, 2020. "We Do Not Have the Same Tastes! Evaluating Individual Heterogeneity in the Preferences for Amenities," Journal of Happiness Studies, Springer, vol. 21(1), pages 53-74, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.