[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v305y2024ics0378377424004396.html
   My bibliography  Save this article

Integrated effects of polyethylene/biodegradable residual film on soil hydrothermal conditions and spring maize growth in rain-fed dryland

Author

Listed:
  • Zhang, Guixin
  • Zhang, Shibo
  • Xia, Zhenqing
  • Bai, Jingxuan
  • Wu, Mengke
  • Lu, Haidong
Abstract
Mulch technology has significantly enhanced agricultural production in arid and semi-arid regions worldwide. However, the long-term use of traditional plastic mulch has caused environmental concerns due to persistent residues. Biodegradable mulch offers a potential solution to these issues. But little is known about the effects of different residual films on soil hydrothermal properties, and how this ultimately drives maize growth and yield formation. To address this gap, we conducted a two-year field experiment involving low-density polyethylene film (LDPE) and polylactic acid film (PLA), at three residual levels (75 kg ha−1,150 kg ha−1, and 300 kg ha−1), with a control having no residual film. Our findings showed that increased amounts of residual film increased soil bulk density and decreased soil porosity, leading to decreased soil water storage and increased soil temperature. The structure equation model indicated that these deteriorated soil hydrothermal conditions hindered maize root growth, resulting in lower yield and hydrothermal use efficiency. In the second year of this experiment, the film mass density of PLA treatments declined significantly compared to LDPE, leading to fewer adverse effects on soil physical structure, moisture, and temperature. Betters soil hydrothermal environment favor maize biomass accumulation and yield formation. Compared to LDPE treatments, the grain yield, water use efficiency, and soil accumulated temperature use efficiency of PLA treatments increased by an average of 3.98 %, 3.86 %, and 4.42 %. Therefore, we recommend eco-safe PLA mulch as a sustainable alternative to LDPE mulch for maize production in arid and semi-arid areas.

Suggested Citation

  • Zhang, Guixin & Zhang, Shibo & Xia, Zhenqing & Bai, Jingxuan & Wu, Mengke & Lu, Haidong, 2024. "Integrated effects of polyethylene/biodegradable residual film on soil hydrothermal conditions and spring maize growth in rain-fed dryland," Agricultural Water Management, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004396
    DOI: 10.1016/j.agwat.2024.109103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004396
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.