[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v12y1994i4p371-89.html
   My bibliography  Save this article

Bayesian Analysis of Stochastic Volatility Models

Author

Listed:
  • Jacquier, Eric
  • Polson, Nicholas G
  • Rossi, Peter E
Abstract
New techniques for the analysis of stochastic volatility models are developed. A Metropolis algorithm is used to construct a Markov Chain simulation tool. The exact solution to the filtering/smoothing problem of inferring about the unobserved variance states is a by-product of the authors' method. In addition, multistep-ahead predictive densities can be constructed. The authors illustrate their method by analyzing stock data. Sampling experiments are conducted to compare the performance of Bayes estimators to method of moments and quasi-maximum likelihood estimators proposed in the literature. In both parameter estimation and filtering, the Bayes estimators outperform these other approaches.

Suggested Citation

  • Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-389, October.
  • Handle: RePEc:bes:jnlbes:v:12:y:1994:i:4:p:371-89
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:12:y:1994:i:4:p:371-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.