[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/aea/jecper/v24y2010i2p31-46.html
   My bibliography  Save this article

Tantalus on the Road to Asymptopia

Author

Listed:
  • Edward E. Leamer
Abstract
My first reaction to "The Credibility Revolution in Empirical Economics," authored by Joshua D. Angrist and Jörn-Steffen Pischke, was: Wow! This paper makes a stunningly good case for relying on purposefully randomized or accidentally randomized experiments to relieve the doubts that afflict inferences from nonexperimental data. On further reflection, I realized that I may have been overcome with irrational exuberance. Moreover, with this great honor bestowed on my "con" article, I couldn't easily throw this child of mine overboard. As Angrist and Pischke persuasively argue, either purposefully randomized experiments or accidentally randomized "natural" experiments can be extremely helpful, but Angrist and Pischke seem to me to overstate the potential benefits of the approach. I begin with some thoughts about the inevitable limits of randomization, and the need for sensitivity analysis in this area, as in all areas of applied empirical work. I argue that the recent financial catastrophe is a powerful illustration of the fact that extrapolating from natural experiments will inevitably be hazardous. I discuss how the difficulties of applied econometric work cannot be evaded with econometric innovations, offering as examples some under-recognized difficulties with instrumental variables and robust standard errors. I conclude with comments about the shortcomings of an experimentalist paradigm as applied to macroeconomics, and some warnings about the willingness of applied economists to apply push-button methodologies without sufficient hard thought regarding their applicability and shortcomings.

Suggested Citation

  • Edward E. Leamer, 2010. "Tantalus on the Road to Asymptopia," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 31-46, Spring.
  • Handle: RePEc:aea:jecper:v:24:y:2010:i:2:p:31-46
    Note: DOI: 10.1257/jep.24.2.31
    as

    Download full text from publisher

    File URL: http://www.aeaweb.org/articles.php?doi=10.1257/jep.24.2.31
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leamer, Edward E., 1985. "Vector autoregressions for causal inference?," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 22(1), pages 255-304, January.
    2. Gary Chamberlain & Guido W. Imbens, 1996. "Hierarchical Bayes Models with Many Instrumental Variables," Harvard Institute of Economic Research Working Papers 1781, Harvard - Institute of Economic Research.
    3. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    4. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    5. Guido W. Imbens, 2010. "Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 399-423, June.
    6. Edward E. Leamer, 2009. "Macroeconomic Patterns and Stories," Springer Books, Springer, number 978-3-540-46389-4, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    2. Angus Deaton, 2010. "Instruments, Randomization, and Learning about Development," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 424-455, June.
    3. Angus Deaton, 2009. "Instruments of development: Randomization in the tropics, and the search for the elusive keys to economic development," Working Papers 1128, Princeton University, Woodrow Wilson School of Public and International Affairs, Center for Health and Wellbeing..
    4. Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
    5. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    6. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    7. Haoge Chang & Joel Middleton & P. M. Aronow, 2021. "Exact Bias Correction for Linear Adjustment of Randomized Controlled Trials," Papers 2110.08425, arXiv.org, revised Oct 2021.
    8. Lusardi, Annamaria & Michaud, Pierre-Carl & Mitchell, Olivia S., 2020. "Assessing the impact of financial education programs: A quantitative model," Economics of Education Review, Elsevier, vol. 78(C).
    9. Breen, Richard & Ermisch, John, 2021. "Instrumental Variable Estimation in Demographic Studies: The LATE interpretation of the IV estimator with heterogenous effects," SocArXiv vx9m7, Center for Open Science.
    10. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    11. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    12. Balestra, Simone & Backes-Gellner, Uschi, 2017. "Heterogeneous returns to education over the wage distribution: Who profits the most?," Labour Economics, Elsevier, vol. 44(C), pages 89-105.
    13. Paul Hünermund & Dirk Czarnitzki, 2016. "Estimating the local average treatment effect of R&D subsidies in a pan-European program," Working Papers of Department of Management, Strategy and Innovation, Leuven 541177, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
    14. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    15. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118.
    16. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    17. Schaubert, Marianna, 2018. "Behavioral Response of Non-Resident Parents to Child Support Obligations: Evidence From SOEP," EconStor Preprints 203675, ZBW - Leibniz Information Centre for Economics.
    18. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    19. Joshua D. Angrist & Alan B. Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 69-85, Fall.
    20. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.

    More about this item

    JEL classification:

    • B41 - Schools of Economic Thought and Methodology - - Economic Methodology - - - Economic Methodology
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:jecper:v:24:y:2010:i:2:p:31-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.