[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/zbw/ifweej/20172.html
   My bibliography  Save this article

On the return-volatility relationship in the Bitcoin market around the price crash of 2013

Author

Listed:
  • Bouri, Elie
  • Azzi, Georges
  • Dyhrberg, Anne Haubo
Abstract
The authors examine the relation between price returns and volatility changes in the Bitcoin market using a daily database denominated in US dollar. The results for the entire period provide no evidence of an asymmetric return-volatility relation in the Bitcoin market. The authors test if there is a difference in the return-volatility relation before and after the price crash of 2013 and show a significant inverse relation between past shocks and volatility before the crash and no significant relation after. This finding shows that, prior to the price crash of December 2013, positive shocks increased the conditional volatility more than negative shocks. This inverted asymmetric reaction of Bitcoin to positive and negative shocks is contrary to what one observes in equities. As leverage effect and volatility feedback do not adequately explain this reaction, the authors propose the safe-haven effect (Baur, Asymmetric volatility in the gold market, 2012). They highlight the benefits of adding Bitcoin to a US equity portfolio, especially in the pre-crash period. Robustness analyses show, among others, a negative relation between the US implied volatility index (VIX) and Bitcoin volatility. Those additional analyses further support the findings and provide useful information for economic actors who are interested in adding Bitcoin to their equity portfolios or are curious about the capabilities of Bitcoin as a financial asset.

Suggested Citation

  • Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
  • Handle: RePEc:zbw:ifweej:20172
    DOI: 10.5018/economics-ejournal.ja.2017-2
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.5018/economics-ejournal.ja.2017-2
    Download Restriction: no

    File URL: https://www.econstor.eu/bitstream/10419/150536/1/880450789.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5018/economics-ejournal.ja.2017-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Garcia & Claudio Juan Tessone & Pavlin Mavrodiev & Nicolas Perony, 2014. "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Papers 1408.1494, arXiv.org.
    2. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    3. Jamal Bouoiyour & Refk Selmi & Aviral Kumar Tiwari & Olaolu Richard Olayeni, 2016. "What drives Bitcoin price?," Economics Bulletin, AccessEcon, vol. 36(2), pages 843-850.
    4. David Yermack, 2013. "Is Bitcoin a Real Currency? An economic appraisal," NBER Working Papers 19747, National Bureau of Economic Research, Inc.
    5. Anne Haubo Dyhrberg, 2015. "Hedging Capabilities of Bitcoin. Is it the virtual gold?," Working Papers 201521, School of Economics, University College Dublin.
    6. Elie Bouri & Luis A. Gil‐Alana & Rangan Gupta & David Roubaud, 2019. "Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 412-426, January.
    7. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    8. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    9. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    10. Dwyer, Gerald P., 2015. "The economics of Bitcoin and similar private digital currencies," Journal of Financial Stability, Elsevier, vol. 17(C), pages 81-91.
    11. Liu, Ming-Lei & Ji, Qiang & Fan, Ying, 2013. "How does oil market uncertainty interact with other markets? An empirical analysis of implied volatility index," Energy, Elsevier, vol. 55(C), pages 860-868.
    12. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    13. Duffee, Gregory R., 1995. "Stock returns and volatility A firm-level analysis," Journal of Financial Economics, Elsevier, vol. 37(3), pages 399-420, March.
    14. Brandvold, Morten & Molnár, Peter & Vagstad, Kristian & Andreas Valstad, Ole Christian, 2015. "Price discovery on Bitcoin exchanges," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 36(C), pages 18-35.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Balcilar & Elie Bouri & Rangan Gupta & David Roubaud, 2016. "Can Volume Predict Bitcoin Returns and Volatility? A Nonparametric Causality-in-Quantiles Approach," Working Papers 201662, University of Pretoria, Department of Economics.
    2. Elie Bouri & Luis A. Gil‐Alana & Rangan Gupta & David Roubaud, 2019. "Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 412-426, January.
    3. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    4. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    5. Frode Kjærland & Aras Khazal & Erlend A. Krogstad & Frans B. G. Nordstrøm & Are Oust, 2018. "An Analysis of Bitcoin’s Price Dynamics," JRFM, MDPI, vol. 11(4), pages 1-18, October.
    6. Zura Kakushadze & Jim Kyung-Soo Liew, 2018. "CryptoRuble: From Russia with Love," Papers 1801.05760, arXiv.org.
    7. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    8. Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
    9. Eross, Andrea & McGroarty, Frank & Urquhart, Andrew & Wolfe, Simon, 2019. "The intraday dynamics of bitcoin," Research in International Business and Finance, Elsevier, vol. 49(C), pages 71-81.
    10. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    11. Urquhart, Andrew & Zhang, Hanxiong, 2019. "Is Bitcoin a hedge or safe haven for currencies? An intraday analysis," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 49-57.
    12. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. I," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 44, pages 5-24.
    13. Mehmet Levent ERDAS & Abdullah Emre CAGLAR, 2018. "Analysis of the relationships between Bitcoin and exchange rate, commodities and global indexes by asymmetric causality test," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 9, pages 27-45, December.
    14. Rehman, Mobeen Ur & Apergis, Nicholas, 2019. "Determining the predictive power between cryptocurrencies and real time commodity futures: Evidence from quantile causality tests," Resources Policy, Elsevier, vol. 61(C), pages 603-616.
    15. Obryan Poyser, 2017. "Exploring the determinants of Bitcoin's price: an application of Bayesian Structural Time Series," Papers 1706.01437, arXiv.org.
    16. Jamal Bouoiyour & Refk Selmi, 2017. "Are Trump and Bitcoin Good Partners?," Working Papers hal-01480031, HAL.
    17. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    18. Gil-Alana, Luis Alberiko & Abakah, Emmanuel Joel Aikins & Rojo, María Fátima Romero, 2020. "Cryptocurrencies and stock market indices. Are they related?," Research in International Business and Finance, Elsevier, vol. 51(C).
    19. Kim, Thomas, 2017. "On the transaction cost of Bitcoin," Finance Research Letters, Elsevier, vol. 23(C), pages 300-305.
    20. Ziaul Haque Munim & Mohammad Hassan Shakil & Ilan Alon, 2019. "Next-Day Bitcoin Price Forecast," JRFM, MDPI, vol. 12(2), pages 1-15, June.

    More about this item

    Keywords

    Bitcoin; price crash of 2013; asymmetric GARCH; safe haven;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifweej:20172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.