8000 Tensors don't print sometimes · Issue #10 · pytorch/pytorch · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Tensors don't print sometimes #10

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
szagoruyko opened this issue Sep 7, 2016 · 2 comments
Closed

Tensors don't print sometimes #10

szagoruyko opened this issue Sep 7, 2016 · 2 comments

Comments

@szagoruyko
Copy link
Contributor
print(net.output.numpy())
print(net.output)

outputs:

[[ 0.13239434 -0.29563415 -1.65602779 ...,  0.40573671  2.0148921
   2.12263751]
 [ 0.40269312 -0.46252817 -1.35247242 ...,  0.53116792  1.76924741
   1.93715036]]
Traceback (most recent call last):
  File "loader.py", line 94, in <module>
    print(net.output)
  File "/home/zagoruys/anaconda2/lib/python2.7/site-packages/torch/Tensor.py", line 87, in __str__
    return TensorPrinting.printTensor(self)
  File "/home/zagoruys/anaconda2/lib/python2.7/site-packages/torch/TensorPrinting.py", line 110, in printTensor
    strt = _printMatrix(self)
  File "/home/zagoruys/anaconda2/lib/python2.7/site-packages/torch/TensorPrinting.py", line 69, in _printMatrix
    strt += ' '.join(fmt.format(val/scale) for val in self.select(0, l).narrow(0, firstColumn, lastColumn-firstColumn+1)) + '\n'
ValueError: Invalid arguments! Got (int, int, float), but expected (long dimension, long start, long length)

tbh I would rely on numpy for all printing

apaszke pushed a commit that referenced this issue Sep 7, 2016
Make bias optional in Conv2d
@soumith
Copy link
Member
soumith commented Sep 7, 2016

tbh I would rely on numpy for all printing

we'll fix and add unit tests for printing. obviously printing need to be reliable...

@apaszke
Copy link
Contributor
apaszke commented Sep 9, 2016

Fixed in f646391

@apaszke apaszke closed this as completed Sep 9, 2016
pytorch-bot bot pushed a commit that referenced this issue Jan 9, 2024
pytorchmergebot pushed a commit that referenced this issue Feb 2, 2024
user may not know which line of code called collectives in a big code base. When debugging, we can print python-cpp stacktrace in case user call ``ProcessGroup.reduce`` instead of ``torch.distributed.reduce``

```
LOG(INFO) << "ProcessGroupNCCL::_allgather_base stacktrace: "
                       << get_python_cpp_trace();
```

output (using _allgather_base as an example): one example python-part trace is ``all_gather_into_tensor from /data/users/weif/pytorch/torch/distributed/distributed_c10d.py:2838``
```
ProcessGroupNCCL::_allgather_base stacktrace: #0 torch::unwind::unwind() from ??:0
#1 torch::CapturedTraceback::gather(bool, bool, bool) from ??:0
#2 c10d::get_python_cpp_trace[abi:cxx11]() from :0
#3 c10d::ProcessGroupNCCL::_allgather_base(at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&) from ??:0
#4 c10d::ops::(anonymous namespace)::_allgather_base_CUDA(at::Tensor&, at::Tensor&, c10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, bool, long) from Ops.cpp:0
#5 c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoRuntimeFunctor_<std::tuple<at::Tensor, c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > > (*)(at::Tensor&, at::Tensor&, c10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, bool, long), std::tuple<at::Tensor, c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > >, c10::guts::typelist::typelist<at::Tensor&, at::Tensor&, c10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, bool, long> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) from :0
#6 torch::autograd::basicAutogradNotImplementedFallbackImpl(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) from autograd_not_implemented_fallback.cpp:0
#7 c10d::ProcessGroup::_allgather_base(at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&) from :0
#8 pybind11::cpp_function::initialize<pybind11::cpp_function::initialize<c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> >, c10d::ProcessGroup, at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&, pybind11::name, pybind11::is_method, pybind11::sibling, pybind11::arg, pybind11::arg, pybind11::arg_v, pybind11::call_guard<pybind11::gil_scoped_release> >(c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > (c10d::ProcessGroup::*)(at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&), pybind11::name const&, pybind11::is_method const&, pybind11::sibling const&, pybind11::arg const&, pybind11::arg const&, pybind11::arg_v const&, pybind11::call_guard<pybind11::gil_scoped_release> const&)::{lambda(c10d::ProcessGroup*, at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&)#1}, c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> >, c10d::ProcessGroup*, at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&, pybind11::name, pybind11::is_method, pybind11::sibling, pybind11::arg, pybind11::arg, pybind11::arg_v, pybind11::call_guard<pybind11::gil_scoped_release> >(pybind11::cpp_function::initialize<c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> >, c10d::ProcessGroup, at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&, pybind11::name, pybind11::is_method, pybind11::sibling, pybind11::arg, pybind11::arg, pybind11::arg_v, pybind11::call_guard<pybind11::gil_scoped_release> >(c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > (c10d::ProcessGroup::*)(at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&), pybind11::name const&, pybind11::is_method const&, pybind11::sibling const&, pybind11::arg const&, pybind11::arg const&, pybind11::arg_v const&, pybind11::call_guard<pybind11::gil_scoped_release> const&)::{lambda(c10d::ProcessGroup*, at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&)#1}&&, c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > (*)(c10d::ProcessGroup*, at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&), pybind11::name const&, pybind11::is_method const&, pybind11::sibling const&, pybind11::arg const&, pybind11::arg const&, pybind11::arg_v const&, pybind11::call_guard<pybind11::gil_scoped_release> const&)::{lambda(pybind11::detail::function_call&)#3}::_FUN(pybind11::detail::function_call&) from :0
#9 pybind11::cpp_function::dispatcher(_object*, _object*, _object*) from :0
#10 cfunction_call from /usr/local/src/conda/python-3.10.12/Objects/methodobject.c:543
#11 _PyObject_MakeTpCall from /usr/local/src/conda/python-3.10.12/Objects/call.c:215
#12 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:112
#13 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#14 all_gather_into_tensor from /data/users/weif/pytorch/torch/distributed/distributed_c10d.py:2838
#15 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#16 do_call_core from /usr/local/src/conda/python-3.10.12/Python/ceval.c:5945
#17 wrapper from /data/users/weif/pytorch/torch/distributed/c10d_logger.py:75
#18 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#19 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#20 _all_gather_flat_param from /data/users/weif/pytorch/torch/distributed/fsdp/_flat_param.py:1399
#21 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#22 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#23 unshard from /data/users/weif/pytorch/torch/distributed/fsdp/_flat_param.py:1308
#24 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#25 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#26 _unshard from /data/users/weif/pytorch/torch/distributed/fsdp/_runtime_utils.py:332
#27 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#28 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#29 _pre_forward_unshard from /data/users/weif/pytorch/torch/distributed/fsdp/_runtime_utils.py:448
#30 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#31 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#32 _pre_forward from /data/users/weif/pytorch/torch/distributed/fsdp/_runtime_utils.py:413
#33 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#34 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#35 forward from /data/users/weif/pytorch/torch/distributed/fsdp/fully_sharded_data_parallel.py:839
#36 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#37 do_call_core from /usr/local/src/conda/python-3.10.12/Python/ceval.c:5945
#38 _call_impl from /data/users/weif/pytorch/torch/nn/modules/module.py:1520
#39 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#40 do_call_core from /usr/local/src/conda/python-3.10.12/Python/ceval.c:5945
#41 _wrapped_call_impl from /data/users/weif/pytorch/torch/nn/modules/module.py:1511
#42 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#43 _PyObject_Call_Prepend from /usr/local/src/conda/python-3.10.12/Objects/call.c:431
#44 slot_tp_call from /usr/local/src/conda/python-3.10.12/Objects/typeobject.c:7494
#45 _PyObject_MakeTpCall from /usr/local/src/conda/python-3.10.12/Objects/call.c:215
#46 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:112
#47 inner from /data/users/weif/pytorch/run_fsdp.py:72
#48 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/int
8000
ernal/pycore_ceval.h:46
#49 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#50 run from /data/users/weif/pytorch/run_fsdp.py:76
#51 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#52 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#53 main from /data/users/weif/pytorch/run_fsdp.py:133
#54 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#55 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#56 <module> from /data/users/weif/pytorch/run_fsdp.py:137
#57 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#58 PyEval_EvalCode from /usr/local/src/conda/python-3.10.12/Python/ceval.c:1134
#59 run_eval_code_obj from /usr/local/src/conda/python-3.10.12/Python/pythonrun.c:1291
#60 run_mod from /usr/local/src/conda/python-3.10.12/Python/pythonrun.c:1312
#61 pyrun_file from /usr/local/src/conda/python-3.10.12/Python/pythonrun.c:1208
#62 _PyRun_SimpleFileObject from /usr/local/src/conda/python-3.10.12/Python/pythonrun.c:456
#63 _PyRun_AnyFileObject from /usr/local/src/conda/python-3.10.12/Python/pythonrun.c:90
#64 pymain_run_file_obj from /usr/local/src/conda/python-3.10.12/Modules/main.c:357
#65 Py_BytesMain from /usr/local/src/conda/python-3.10.12/Modules/main.c:1090
#66 __libc_start_call_main from ??:0
#67 <unwind unsupported> from ??:0
```

Pull Request resolved: #118924
Approved by: https://github.com/kwen2501
pytorch-bot bot pushed a commit that referenced this issue Feb 8, 2024
user may not know which line of code called collectives in a big code base. When debugging, we can print python-cpp stacktrace in case user call ``ProcessGroup.reduce`` instead of ``torch.distributed.reduce``

```
LOG(INFO) << "ProcessGroupNCCL::_allgather_base stacktrace: "
                       << get_python_cpp_trace();
```

output (using _allgather_base as an example): one example python-part trace is ``all_gather_into_tensor from /data/users/weif/pytorch/torch/distributed/distributed_c10d.py:2838``
```
ProcessGroupNCCL::_allgather_base stacktrace: #0 torch::unwind::unwind() from ??:0
#1 torch::CapturedTraceback::gather(bool, bool, bool) from ??:0
#2 c10d::get_python_cpp_trace[abi:cxx11]() from :0
#3 c10d::ProcessGroupNCCL::_allgather_base(at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&) from ??:0
#4 c10d::ops::(anonymous namespace)::_allgather_base_CUDA(at::Tensor&, at::Tensor&, c10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, bool, long) from Ops.cpp:0
#5 c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoRuntimeFunctor_<std::tuple<at::Tensor, c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > > (*)(at::Tensor&, at::Tensor&, c10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, bool, long), std::tuple<at::Tensor, c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > >, c10::guts::typelist::typelist<at::Tensor&, at::Tensor&, c10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, bool, long> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) from :0
#6 torch::autograd::basicAutogradNotImplementedFallbackImpl(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) from autograd_not_implemented_fallback.cpp:0
#7 c10d::ProcessGroup::_allgather_base(at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&) from :0
#8 pybind11::cpp_function::initialize<pybind11::cpp_function::initialize<c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> >, c10d::ProcessGroup, at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&, pybind11::name, pybind11::is_method, pybind11::sibling, pybind11::arg, pybind11::arg, pybind11::arg_v, pybind11::call_guard<pybind11::gil_scoped_release> >(c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > (c10d::ProcessGroup::*)(at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&), pybind11::name const&, pybind11::is_method const&, pybind11::sibling const&, pybind11::arg const&, pybind11::arg const&, pybind11::arg_v const&, pybind11::call_guard<pybind11::gil_scoped_release> const&)::{lambda(c10d::ProcessGroup*, at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&)#1}, c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> >, c10d::ProcessGroup*, at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&, pybind11::name, pybind11::is_method, pybind11::sibling, pybind11::arg, pybind11::arg, pybind11::arg_v, pybind11::call_guard<pybind11::gil_scoped_release> >(pybind11::cpp_function::initialize<c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> >, c10d::ProcessGroup, at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&, pybind11::name, pybind11::is_method, pybind11::sibling, pybind11::arg, pybind11::arg, pybind11::arg_v, pybind11::call_guard<pybind11::gil_scoped_release> >(c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > (c10d::ProcessGroup::*)(at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&), pybind11::name const&, pybind11::is_method const&, pybind11::sibling const&, pybind11::arg const&, pybind11::arg const&, pybind11::arg_v const&, pybind11::call_guard<pybind11::gil_scoped_release> const&)::{lambda(c10d::ProcessGroup*, at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&)#1}&&, c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > (*)(c10d::ProcessGroup*, at::Tensor&, at::Tensor&, c10d::AllgatherOptions const&), pybind11::name const&, pybind11::is_method const&, pybind11::sibling const&, pybind11::arg const&, pybind11::arg const&, pybind11::arg_v const&, pybind11::call_guard<pybind11::gil_scoped_release> const&)::{lambda(pybind11::detail::function_call&)#3}::_FUN(pybind11::detail::function_call&) from :0
#9 pybind11::cpp_function::dispatcher(_object*, _object*, _object*) from :0
#10 cfunction_call from /usr/local/src/conda/python-3.10.12/Objects/methodobject.c:543
#11 _PyObject_MakeTpCall from /usr/local/src/conda/python-3.10.12/Objects/call.c:215
#12 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:112
#13 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#14 all_gather_into_tensor from /data/users/weif/pytorch/torch/distributed/distributed_c10d.py:2838
#15 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#16 do_call_core from /usr/local/src/conda/python-3.10.12/Python/ceval.c:5945
#17 wrapper from /data/users/weif/pytorch/torch/distributed/c10d_logger.py:75
#18 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#19 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#20 _all_gather_flat_param from /data/users/weif/pytorch/torch/distributed/fsdp/_flat_param.py:1399
#21 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#22 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#23 unshard from /data/users/weif/pytorch/torch/distributed/fsdp/_flat_param.py:1308
#24 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#25 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#26 _unshard from /data/users/weif/pytorch/torch/distributed/fsdp/_runtime_utils.py:332
#27 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#28 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#29 _pre_forward_unshard from /data/users/weif/pytorch/torch/distributed/fsdp/_runtime_utils.py:448
#30 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#31 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#32 _pre_forward from /data/users/weif/pytorch/torch/distributed/fsdp/_runtime_utils.py:413
#33 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#34 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#35 forward from /data/users/weif/pytorch/torch/distributed/fsdp/fully_sharded_data_parallel.py:839
#36 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#37 do_call_core from /usr/local/src/conda/python-3.10.12/Python/ceval.c:5945
#38 _call_impl from /data/users/weif/pytorch/torch/nn/modules/module.py:1520
#39 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#40 do_call_core from /usr/local/src/conda/python-3.10.12/Python/ceval.c:5945
#41 _wrapped_call_impl from /data/users/weif/pytorch/torch/nn/modules/module.py:1511
#42 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#43 _PyObject_Call_Prepend from /usr/local/src/conda/python-3.10.12/Objects/call.c:431
#44 slot_tp_call from /usr/local/src/conda/python-3.10.12/Objects/typeobject.c:7494
#45 _PyObject_MakeTpCall from /usr/local/src/conda/python-3.10.12/Objects/call.c:215
#46 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:112
#47 inner from /data/users/weif/pytorch/run_fsdp.py:72
#48 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#49 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#50 run from /data/users/weif/pytorch/run_fsdp.py:76
#51 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#52 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#53 main from /data/users/weif/pytorch/run_fsdp.py:133
#54 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#55 _PyObject_VectorcallTstate from /usr/local/src/conda/python-3.10.12/Include/cpython/abstract.h:114
#56 <module> from /data/users/weif/pytorch/run_fsdp.py:137
#57 _PyEval_EvalFrame from /usr/local/src/conda/python-3.10.12/Include/internal/pycore_ceval.h:46
#58 PyEval_EvalCode from /usr/local/src/conda/python-3.10.12/Python/ceval.c:1134
#59 run_eval_code_obj from /usr/local/src/conda/python-3.10.12/Python/pythonrun.c:1291
#60 run_mod from /usr/local/src/conda/python-3.10.12/Python/pythonrun.c:1312
#61 pyrun_file from /usr/local/src/conda/python-3.10.12/Python/pythonrun.c:1208
#62 _PyRun_SimpleFileObject from /usr/local/src/conda/python-3.10.12/Python/pythonrun.c:456
#63 _PyRun_AnyFileObject from /usr/local/src/conda/python-3.10.12/Python/pythonrun.c:90
#64 pymain_run_file_obj from /usr/local/src/conda/python-3.10.12/Modules/main.c:357
#65 Py_BytesMain from /usr/local/src/conda/python-3.10.12/Modules/main.c:1090
#66 __libc_start_call_main from ??:0
#67 <unwind unsupported> from ??:0
```

Pull Request resolved: #118924
Approved by: https://github.com/kwen2501
pytorchmergebot pushed a commit that referenced this issue May 21, 2024
#126677)

…destruction of tensors cached by autocast

## Root Cause
For out-of-tree device extension it is loaded after torch (different .so), so the global variable `cached_casts` may be constructed before caching allocator and then destructed in reversed order when exit.

## Fix
Lazily initialize `cached_casts` to correct the order.

## How to Reproduce && Test
Modify the testcase `TestAutocastGPU.test_cast_cache_is_global` in test/test_autocast.py  to run on your out-of-tree device. You will see following failure in the end of test.
```bash
----------------------------------------------------------------------
Ran 1 test in 4.812s

OK
free: 0x30080ff44000400
terminate called after throwing an instance of 'c10::Error'
  what():  invalid device pointer: 0x30080ff44000400
Exception raised from free at /projs/framework/betterman/code/pytorch_new/catch/torch_mlu/csrc/framework/core/caching_allocator.cpp:1609 (most recent call first):
frame #0: <unknown function> + 0x118fe1 (0x7ffaef4d3fe1 in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #1: <unknown function> + 0x11b1c4 (0x7ffaef4d61c4 in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #2: <unknown function> + 0x117677 (0x7ffaef4d2677 in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #3: <unknown function> + 0x11a2bf (0x7ffaef4d52bf in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #4: <unknown function> + 0x11a186 (0x7ffaef4d5186 in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #5: <unknown function> + 0x119fde (0x7ffaef4d4fde in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #6: <unknown function> + 0x119d2e (0x7ffaef4d4d2e in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #7: <unknown function> + 0x119be0 (0x7ffaef4d4be0 in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #8: <unknown function> + 0x119977 (0x7ffaef4d4977 in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #9: <unknown function> + 0x119313 (0x7ffaef4d4313 in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #10: <unknown function> + 0x118b4c (0x7ffaef4d3b4c in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #11: c10::Error::Error(c10::SourceLocation, std::string) + 0x34 (0x7ffaef4d27c4 in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #12: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x7f (0x7ffaef4d04ed in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #13: torch_mlu::MLUCachingAllocator::Native::NativeCachingAllocator::free(void*) + 0xe6 (0x7ff9a8eeb112 in /projs/framework/betterman/code/pytorch_new/catch/torch_mlu/csrc/lib/libtorch_mlu.so)
frame #14: torch_mlu::MLUCachingAllocator::Native::local_raw_delete(void*) + 0x3b (0x7ff9a8ed9480 in /projs/framework/betterman/code/pytorch_new/catch/torch_mlu/csrc/lib/libtorch_mlu.so)                                                                                                                         frame #15: std::unique_ptr<void, void (*)(void*)>::~unique_ptr() + 0x50 (0x7ffb0a5ea322 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_python.so)
frame #16: <unknown function> + 0x1269890 (0x7ffb0a5e4890 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_python.so)
frame #17: <unknown function> + 0x1269928 (0x7ffb0a5e4928 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_python.so)
frame #18: <unknown function> + 0x127572c (0x7ffb0a5f072c in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_python.so)
frame #19: <unknown function> + 0x1275758 (0x7ffb0a5f0758 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_python.so)
frame #20: <unknown function> + 0xb9bc7 (0x7ffaef474bc7 in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame 
685C
#21: <unknown function> + 0xb97bc (0x7ffaef4747bc in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #22: <unknown function> + 0xdbc50 (0x7ffaef496c50 in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #23: c10::TensorImpl::~TensorImpl() + 0x82 (0x7ffaef49157e in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #24: c10::TensorImpl::~TensorImpl() + 0x1c (0x7ffaef4915aa in /projs/framework/betterman/code/pytorch_new/torch/lib/libc10.so)
frame #25: <unknown function> + 0x2f596d9 (0x7ffaf24fc6d9 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_cpu.so)
frame #26: <unknown function> + 0x2f589c2 (0x7ffaf24fb9c2 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_cpu.so)
frame #27: <unknown function> + 0x2f57b92 (0x7ffaf24fab92 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_cpu.so)
frame #28: <unknown function> + 0x2f5c228 (0x7ffaf24ff228 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_cpu.so)
frame #29: <unknown function> + 0x30f3f70 (0x7ffaf2696f70 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_cpu.so)
frame #30: <unknown function> + 0x30f3f90 (0x7ffaf2696f90 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_cpu.so)
frame #31: <unknown function> + 0x30f5004 (0x7ffaf2698004 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_cpu.so)                                                                                                                                                                                frame #32: <unknown function> + 0x30f5024 (0x7ffaf2698024 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_cpu.so)
frame #33: <unknown function> + 0x31207f0 (0x7ffaf26c37f0 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_cpu.so)
frame #34: <unknown function> + 0x3120814 (0x7ffaf26c3814 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_cpu.so)
frame #35: <unknown function> + 0x30f51e8 (0x7ffaf26981e8 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_cpu.so)
frame #36: <unknown function> + 0x30f5148 (0x7ffaf2698148 in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_cpu.so)
frame #37: <unknown function> + 0x316ecea (0x7ffaf2711cea in /projs/framework/betterman/code/pytorch_new/torch/lib/libtorch_cpu.so)
frame #38: <unknown function> + 0x468a7 (0x7ffb0c9ed8a7 in /lib/x86_64-linux-gnu/libc.so.6)
frame #39: on_exit + 0 (0x7ffb0c9eda60 in /lib/x86_64-linux-gnu/libc.so.6)
<omitting python frames>
frame #47: __libc_start_main + 0xf3 (0x7ffb0c9cb083 in /lib/x86_64-linux-gnu/libc.so.6)

Aborted (core dumped)

```

Pull Request resolved: #126677
Approved by: https://github.com/ezyang
pytorchmergebot pushed a commit that referenced this issue Jul 3, 2024
This does a round trip request on socket connect -- this allows for detecting connection resets etc and retrying before the non-retryable application requests are sent.

This adds support for PING to both the libuv and legacy backend.

Example error:
```
[trainer85612|12]:W0701 13:41:43.421574  4776 TCPStore.cpp:182] [c10d] recvValue failed on SocketImpl(fd=24, ...): Connection reset by peer
[trainer85612|12]:Exception raised from recvBytes at /mnt/code/pytorch/torch/csrc/distributed/c10d/Utils.hpp:669 (most recent call first):
...
[trainer85612|12]:#9 c10d::TCPStore::incrementValueBy(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, long) from /packages/.../conda/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so:84809637
[trainer85612|12]:#10 c10d::TCPStore::waitForWorkers() from /packages/.../conda/lib/python3.10/site-packages/torch/lib/libtorch_c
A36C
pu.so:84812868
[trainer85612|12]:#11 c10d::TCPStore::TCPStore(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, c10d::TCPStoreOptions const&) from /packages/.../conda/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so:84814775
```

Test plan:

```
python test/distributed/test_store.py -v
```

```
tristanr@devvm4382 ~/pytorch (d4l3k/tcpstore_ping)> python ~/pt_tests/tcpstore_large_test.py
starting pool
started 90000
started 30000
started 70000
started 20000
started 80000
started 60000
started 0
[W702 16:16:25.301681870 TCPStore.cpp:343] [c10d] Starting store with 100000 workers but somaxconn is 4096.This might cause instability during bootstrap, consider increasing it.
init 20000
set 20000
init 80000
set 80000
init 70000
set 70000
init 60000
set 60000
init 30000
set 30000
init 90000
set 90000
started 40000
init 40000
set 40000
started 50000
init 50000
set 50000
started 10000
init 10000
set 10000
init 0
set 0
run finished 617.2992351055145
```

Pull Request resolved: #129985
Approved by: https://github.com/rsdcastro, https://github.com/kurman
drisspg added a commit that referenced this issue Aug 14, 2024

========= COMPUTE-SANITIZER
Test completed successfully!
========= ERROR SUMMARY: 0 errors
## NOTE:
HMM very interestingly:
If the og_headdim is a odd this works as expected. However when the og_head_dim is a multiple of 2 this segfaults here:
```Shell
(lldb) bt
* thread #67, name = 'pt_autograd_0', stop reason = signal SIGSEGV: address not mapped to object (fault address: 0x10)
  * frame #0: 0x00007ffed327fbfe libtriton.so`scheduleRemainingToLastStage(forOp=ForOp @ 0x00007ffcafdfd658, schedule=0x00007ffcafdfd9e0, afterPrologue=<unavailable>, numStages=2) at MatmulLoopPipeline.cpp:893:9
    frame #1: 0x00007ffed328d970 libtriton.so`mlir::triton::preProcessLoopAndGetSchedule(forOp=0x00007ffcafdfddc0, numStages=2, options=0x00007ffcafdfde80) at MatmulLoopPipeline.cpp:1230:31
    frame #2: 0x00007ffed32a6a43 libtriton.so`mlir::triton::gpu::PipelinePass::runOnOperation() [inlined] pipelineLoop(numStages=2, forOp=ForOp @ 0x00007ffcafdfddc0) at SoftwarePipeliner.cpp:79:47
    frame #3: 0x00007ffed32a6998 libtriton.so`mlir::triton::gpu::PipelinePass::runOnOperation(this=0x00007ffc54767f10) at SoftwarePipeliner.cpp:125:36
    frame #4: 0x00007ffed385147c libtriton.so`mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int) + 700
    frame #5: 0x00007ffed3851df2 libtriton.so`mlir::detail::OpToOpPassAdaptor::runPipeline(mlir::OpPassManager&, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int, mlir::PassInstrumentor*, mlir::PassInstrumentation::PipelineParentInfo const*) + 354
    frame #6: 0x00007ffed385481c libtriton.so`mlir::PassManager::run(mlir::Operation*) + 876
    frame #7: 0x00007ffed3542bad libtriton.so`<lambda(mlir::PassManager&, mlir::ModuleOp&)>::operator(self=<unavailable>, mod=0x00007ffc54579280, __closure=<unavailable>)(mlir::PassManager &, mlir::ModuleOp &) at ir.cc:1625:19
    frame #8: 0x00007ffed3560108 libtriton.so`_FUN [inlined] operator(this=0x0000000000000000, call=0x00007ffcafdfe6e0) at cast.h:1480:37
    frame #9: 0x00007ffed35600f0 libtriton.so`_FUN((null)=0x00007ffcafdfe6e0) at pybind11.h:224:21
    frame #10: 0x00007ffed9ae5590 libtriton.so`typeinfo for pybind11::handle + 24
    frame #11: 0x00007ffed9ae5590 libtriton.so`typeinfo for pybind11::handle + 24
```




cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang

[ghstack-poisoned]
pytorchmergebot pushed a commit that referenced this issue Nov 22, 2024
See #140725 (comment)
Running `torch.mps.synchronize()` after metal kernel resulted in infinite wait inside `[_MTLCommandBuffer waitUntilCompleted]`
```
(lldb) bt
* thread #1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP
  * frame #0: 0x00000001aa919084 Metal`pthread_cond_wait + 12
    frame #1: 0x00000001aa78b1b4 Metal`-[_MTLCommandBuffer waitUntilCompleted] + 84
    frame #2: 0x00000001032bf358 libtorch_python.dylib`torch::mps::MPSModule_deviceSynchronize(_object*, _object*) + 40
    frame #3: 0x0000000100e94c20 Python`cfunction_vectorcall_NOARGS + 100
    frame #4: 0x0000000100e389b8 Python`PyObject_Vectorcall + 92
    frame #5: 0x0000000100f61e38 Python`_PyEval_EvalFrameDefault + 19040
    frame #6: 0x0000000100f5d180 Python`PyEval_EvalCode + 200
    frame #7: 0x0000000100fcd1a4 Python`run_eval_code_obj + 104
    frame #8: 0x0000000100fccbe4 Python`run_mod + 168
    frame #9: 0x0000000100fcb518 Python`pyrun_file + 164
    frame #10: 0x0000000100fca854 Python`_PyRun_SimpleFileObject + 256
    frame #11: 0x0000000100fca4e8 Python`_PyRun_AnyFileObject + 80
    frame #12: 0x0000000100ff2028 Python`pymain_run_file_obj + 164
    frame #13: 0x0000000100ff1ce4 Python`pymain_run_file + 72
    frame #14: 0x0000000100ff0f74 Python`Py_RunMain + 988
    frame #15: 0x0000000100ff1564 Python`pymain_main + 304
    frame #16: 0x0000000100ff1604 Python`Py_BytesMain + 40
    frame #17: 0x000000019f630274 dyld`start + 2840
```

Pull Request resolved: #141296
Approved by: https://github.com/huydhn
youssef62 pushed a commit to youssef62/pytorch that referenced this issue Nov 23, 2024
See pytorch#140725 (comment)
Running `torch.mps.synchronize()` after metal kernel resulted in infinite wait inside `[_MTLCommandBuffer waitUntilCompleted]`
```
(lldb) bt
* thread pytorch#1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP
  * frame #0: 0x00000001aa919084 Metal`pthread_cond_wait + 12
    frame pytorch#1: 0x00000001aa78b1b4 Metal`-[_MTLCommandBuffer waitUntilCompleted] + 84
    frame pytorch#2: 0x00000001032bf358 libtorch_python.dylib`torch::mps::MPSModule_deviceSynchronize(_object*, _object*) + 40
    frame pytorch#3: 0x0000000100e94c20 Python`cfunction_vectorcall_NOARGS + 100
    frame pytorch#4: 0x0000000100e389b8 Python`PyObject_Vectorcall + 92
    frame pytorch#5: 0x0000000100f61e38 Python`_PyEval_EvalFrameDefault + 19040
    frame pytorch#6: 0x0000000100f5d180 Python`PyEval_EvalCode + 200
    frame pytorch#7: 0x0000000100fcd1a4 Python`run_eval_code_obj + 104
    frame pytorch#8: 0x0000000100fccbe4 Python`run_mod + 168
    frame pytorch#9: 0x0000000100fcb518 Python`pyrun_file + 164
    frame pytorch#10: 0x0000000100fca854 Python`_PyRun_SimpleFileObject + 256
    frame pytorch#11: 0x0000000100fca4e8 Python`_PyRun_AnyFileObject + 80
    frame pytorch#12: 0x0000000100ff2028 Python`pymain_run_file_obj + 164
    frame pytorch#13: 0x0000000100ff1ce4 Python`pymain_run_file + 72
    frame pytorch#14: 0x0000000100ff0f74 Python`Py_RunMain + 988
    frame pytorch#15: 0x0000000100ff1564 Python`pymain_main + 304
    frame pytorch#16: 0x0000000100ff1604 Python`Py_BytesMain + 40
    frame pytorch#17: 0x000000019f630274 dyld`start + 2840
```

Pull Request resolved: pytorch#141296
Approved by: https://github.com/huydhn
chunyuan-w pushed a commit to chunyuan-w/pytorch that referenced this issue Nov 27, 2024
Ryo-not-rio pushed a commit to Ryo-not-rio/pytorch that referenced this issue Dec 2, 2024
See pytorch#140725 (comment)
Running `torch.mps.synchronize()` after metal kernel resulted in infinite wait inside `[_MTLCommandBuffer waitUntilCompleted]`
```
(lldb) bt
* thread pytorch#1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP
  * frame #0: 0x00000001aa919084 Metal`pthread_cond_wait + 12
    frame pytorch#1: 0x00000001aa78b1b4 Metal`-[_MTLCommandBuffer waitUntilCompleted] + 84
    frame pytorch#2: 0x00000001032bf358 libtorch_python.dylib`torch::mps::MPSModule_deviceSynchronize(_object*, _object*) + 40
    frame pytorch#3: 0x0000000100e94c20 Python`cfunction_vectorcall_NOARGS + 100
    frame pytorch#4: 0x0000000100e389b8 Python`PyObject_Vectorcall + 92
    frame pytorch#5: 0x0000000100f61e38 Python`_PyEval_EvalFrameDefault + 19040
    frame pytorch#6: 0x0000000100f5d180 Python`PyEval_EvalCode + 200
    frame pytorch#7: 0x0000000100fcd1a4 Python`run_eval_code_obj + 104
    frame pytorch#8: 0x0000000100fccbe4 Python`run_mod + 168
    frame pytorch#9: 0x0000000100fcb518 Python`pyrun_file + 164
    frame pytorch#10: 0x0000000100fca854 Python`_PyRun_SimpleFileObject + 256
    frame pytorch#11: 0x0000000100fca4e8 Python`_PyRun_AnyFileObject + 80
    frame pytorch#12: 0x0000000100ff2028 Python`pymain_run_file_obj + 164
    frame pytorch#13: 0x0000000100ff1ce4 Python`pymain_run_file + 72
    frame pytorch#14: 0x0000000100ff0f74 Python`Py_RunMain + 988
    frame pytorch#15: 0x0000000100ff1564 Python`pymain_main + 304
    frame pytorch#16: 0x0000000100ff1604 Python`Py_BytesMain + 40
    frame pytorch#17: 0x000000019f630274 dyld`start + 2840
```

Pull Request resolved: pytorch#141296
Approved by: https://github.com/huydhn
pobin6 pushed a commit to pobin6/pytorch that referenced this issue Dec 5, 2024
See pytorch#140725 (comment)
Running `torch.mps.synchronize()` after metal kernel resulted in infinite wait inside `[_MTLCommandBuffer waitUntilCompleted]`
```
(lldb) bt
* thread #1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP
  * frame #0: 0x00000001aa919084 Metal`pthread_cond_wait + 12
    frame #1: 0x00000001aa78b1b4 Metal`-[_MTLCommandBuffer waitUntilCompleted] + 84
    frame pytorch#2: 0x00000001032bf358 libtorch_python.dylib`torch::mps::MPSModule_deviceSynchronize(_object*, _object*) + 40
    frame pytorch#3: 0x0000000100e94c20 Python`cfunction_vectorcall_NOARGS + 100
    frame pytorch#4: 0x0000000100e389b8 Python`PyObject_Vectorcall + 92
    frame pytorch#5: 0x0000000100f61e38 Python`_PyEval_EvalFrameDefault + 19040
    frame pytorch#6: 0x0000000100f5d180 Python`PyEval_EvalCode + 200
    frame pytorch#7: 0x0000000100fcd1a4 Python`run_eval_code_obj + 104
    frame pytorch#8: 0x0000000100fccbe4 Python`run_mod + 168
    frame pytorch#9: 0x0000000100fcb518 Python`pyrun_file + 164
    frame pytorch#10: 0x0000000100fca854 Python`_PyRun_SimpleFileObject + 256
    frame pytorch#11: 0x0000000100fca4e8 Python`_PyRun_AnyFileObject + 80
    frame pytorch#12: 0x0000000100ff2028 Python`pymain_run_file_obj + 164
    frame pytorch#13: 0x0000000100ff1ce4 Python`pymain_run_file + 72
    frame pytorch#14: 0x0000000100ff0f74 Python`Py_RunMain + 988
    frame pytorch#15: 0x0000000100ff1564 Python`pymain_main + 304
    frame pytorch#16: 0x0000000100ff1604 Python`Py_BytesMain + 40
    frame pytorch#17: 0x000000019f630274 dyld`start + 2840
```

Pull Request resolved: pytorch#141296
Approved by: https://github.com/huydhn
drisspg added a commit that referenced this issue Jan 15, 2025
…ention"


Thanks to manman-ren who verified that triton-lang/triton#4247 fixes this issue as well. This is not currently cherry-picked into pytorch-triton.

========= COMPUTE-SANITIZER
Test completed successfully!
========= ERROR SUMMARY: 0 errors
## NOTE:
HMM very interestingly:
If the og_headdim is a odd this works as expected. However when the og_head_dim is a multiple of 2 this segfaults here:
```Shell
(lldb) bt
* thread #67, name = 'pt_autograd_0', stop reason = signal SIGSEGV: address not mapped to object (fault address: 0x10)
  * frame #0: 0x00007ffed327fbfe libtriton.so`scheduleRemainingToLastStage(forOp=ForOp @ 0x00007ffcafdfd658, schedule=0x00007ffcafdfd9e0, afterPrologue=<unavailable>, numStages=2) at MatmulLoopPipeline.cpp:893:9
    frame #1: 0x00007ffed328d970 libtriton.so`mlir::triton::preProcessLoopAndGetSchedule(forOp=0x00007ffcafdfddc0, numStages=2, options=0x00007ffcafdfde80) at MatmulLoopPipeline.cpp:1230:31
    frame #2: 0x00007ffed32a6a43 libtriton.so`mlir::triton::gpu::PipelinePass::runOnOperation() [inlined] pipelineLoop(numStages=2, forOp=ForOp @ 0x00007ffcafdfddc0) at SoftwarePipeliner.cpp:79:47
    frame #3: 0x00007ffed32a6998 libtriton.so`mlir::triton::gpu::PipelinePass::runOnOperation(this=0x00007ffc54767f10) at SoftwarePipeliner.cpp:125:36
    frame #4: 0x00007ffed385147c libtriton.so`mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int) + 700
    frame #5: 0x00007ffed3851df2 libtriton.so`mlir::detail::OpToOpPassAdaptor::runPipeline(mlir::OpPassManager&, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int, mlir::PassInstrumentor*, mlir::PassInstrumentation::PipelineParentInfo const*) + 354
    frame #6: 0x00007ffed385481c libtriton.so`mlir::PassManager::run(mlir::Operation*) + 876
    frame #7: 0x00007ffed3542bad libtriton.so`<lambda(mlir::PassManager&, mlir::ModuleOp&)>::operator(self=<unavailable>, mod=0x00007ffc54579280, __closure=<unavailable>)(mlir::PassManager &, mlir::ModuleOp &) at ir.cc:1625:19
    frame #8: 0x00007ffed3560108 libtriton.so`_FUN [inlined] operator(this=0x0000000000000000, call=0x00007ffcafdfe6e0) at cast.h:1480:37
    frame #9: 0x00007ffed35600f0 libtriton.so`_FUN((null)=0x00007ffcafdfe6e0) at pybind11.h:224:21
    frame #10: 0x00007ffed9ae5590 libtriton.so`typeinfo for pybind11::handle + 24
    frame #11: 0x00007ffed9ae5590 libtriton.so`typeinfo for pybind11::handle + 24
```




cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang aakhundov

[ghstack-poisoned]
drisspg added a commit that referenced this issue Jan 15, 2025
Thanks to manman-ren who verified that triton-lang/triton#4247 fixes this issue as well. This is not currently cherry-picked into pytorch-triton.

========= COMPUTE-SANITIZER
Test completed successfully!
========= ERROR SUMMARY: 0 errors
## NOTE:
HMM very interestingly:
If the og_headdim is a odd this works as expected. However when the og_head_dim is a multiple of 2 this segfaults here:
```Shell
(lldb) bt
* thread #67, name = 'pt_autograd_0', stop reason = signal SIGSEGV: address not mapped to object (fault address: 0x10)
  * frame #0: 0x00007ffed327fbfe libtriton.so`scheduleRemainingToLastStage(forOp=ForOp @ 0x00007ffcafdfd658, schedule=0x00007ffcafdfd9e0, afterPrologue=<unavailable>, numStages=2) at MatmulLoopPipeline.cpp:893:9
    frame #1: 0x00007ffed328d970 libtriton.so`mlir::triton::preProcessLoopAndGetSchedule(forOp=0x00007ffcafdfddc0, numStages=2, options=0x00007ffcafdfde80) at MatmulLoopPipeline.cpp:1230:31
    frame #2: 0x00007ffed32a6a43 libtriton.so`mlir::triton::gpu::PipelinePass::runOnOperation() [inlined] pipelineLoop(numStages=2, forOp=ForOp @ 0x00007ffcafdfddc0) at SoftwarePipeliner.cpp:79:47
    frame #3: 0x00007ffed32a6998 libtriton.so`mlir::triton::gpu::PipelinePass::runOnOperation(this=0x00007ffc54767f10) at SoftwarePipeliner.cpp:125:36
    frame #4: 0x00007ffed385147c libtriton.so`mlir::detail::OpToOpPassAdaptor::run(mlir::Pass*, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int) + 700
    frame #5: 0x00007ffed3851df2 libtriton.so`mlir::detail::OpToOpPassAdaptor::runPipeline(mlir::OpPassManager&, mlir::Operation*, mlir::AnalysisManager, bool, unsigned int, mlir::PassInstrumentor*, mlir::PassInstrumentation::PipelineParentInfo const*) + 354
    frame #6: 0x00007ffed385481c libtriton.so`mlir::PassManager::run(mlir::Operation*) + 876
    frame #7: 0x00007ffed3542bad libtriton.so`<lambda(mlir::PassManager&, mlir::ModuleOp&)>::operator(self=<unavailable>, mod=0x00007ffc54579280, __closure=<unavailable>)(mlir::PassManager &, mlir::ModuleOp &) at ir.cc:1625:19
    frame #8: 0x00007ffed3560108 libtriton.so`_FUN [inlined] operator(this=0x0000000000000000, call=0x00007ffcafdfe6e0) at cast.h:1480:37
    frame #9: 0x00007ffed35600f0 libtriton.so`_FUN((null)=0x00007ffcafdfe6e0) at pybind11.h:224:21
    frame #10: 0x00007ffed9ae5590 libtriton.so`typeinfo for pybind11::handle + 24
    frame #11: 0x00007ffed9ae5590 libtriton.so`typeinfo for pybind11::handle + 24
```




cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx ipiszy yf225 chenyang78 kadeng muchulee8 ColinPeppler amjames desertfire chauhang aakhundov

[ghstack-poisoned]
gglin001 added a commit to torch-nupu/pytorch that referenced this issue Jan 23, 2025
c-p-i-o added a commit to c-p-i-o/pytorch that referenced this issue Jan 23, 2025
Summary:
Fix memory leak on shutdown when socket is closed.
We still need to free the buffer to make valgrind happy.

Test Plan:
Use `mtiavm`.
Repro steps provided by cristianlume.

1. Build
```
buck2 run //mtia/vm:athena-amodel-usd-owl-rank-
2. Run 2 VMs

on window 1:
```
mtiavm ssh --vm=0 -- $(buck run @//neteng/ai/rdma_gen/mode/owl //neteng/ai/rdma_gen:rdma_gen --emit-shell) --rdma_mode=mtiav1 --num_ranks=2
on window 2:
````
mtiavm ssh --vm=1 -- $(buck run @//neteng/ai/rdma_gen/mode/owl //neteng/ai/rdma_gen:rdma_gen --emit-shell) --rdma_mode=mtiav1 --num_ranks=2 --rank=1 --store_host=172.16.1.1
```


without the fix:
```
==8766==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 8000 byte(s) in 2 object(s) allocated from:
    #0 0x5696fe in malloc (/data/users/cpio/fbsource/buck-out/v2/gen/fbcode/d4f2c81239ceac96/neteng/ai/rdma_gen/__rdma_gen__/rdma_gen+0x5696fe)
    pytorch#1 0x7faa8d40c47b in c10d::detail::UvTcpSocket::alloc_buffer(uv_handle_s*, unsigned long, uv_buf_t*) fbcode/caffe2/torch/csrc/distributed/c10d/TCPStoreLibUvBackend.cpp:121
    pytorch#2 0x7faa6f62316d in uv__read /home/engshare/third-party2/libuv/1.34.2/src/libuv-v1.34.2/src/unix/stream.c:1143:5
    pytorch#3 0x7faa6f6239ef in uv__stream_io /home/engshare/third-party2/libuv/1.34.2/src/libuv-v1.34.2/src/unix/stream.c:1306:5
    pytorch#4 0x7faa6f62941f in uv__io_poll /home/engshare/third-party2/libuv/1.34.2/src/libuv-v1.34.2/src/unix/linux-core.c:431:11
    pytorch#5 0x7faa6f618629 in uv_run /home/engshare/third-party2/libuv/1.34.2/src/libuv-v1.34.2/src/unix/core.c:375:5
    pytorch#6 0x7faa8d3e7320 in c10d::detail::LibUVStoreDaemon::run() fbcode/caffe2/torch/csrc/distributed/c10d/TCPStoreLibUvBackend.cpp:1216
    pytorch#7 0x7faa8d3bc933 in void std::__invoke_impl<void, void (c10d::detail::BackgroundThread::*)(), c10d::detail::BackgroundThread*>(std::__invoke_memfun_deref, void (c10d::detail::BackgroundThread::*&&)(), c10d::detail::BackgroundThread*&&) fbcode/third-party-buck/platform010/build/libgcc/include/c++/trunk/bits/invoke.h:74
    pytorch#8 0x7faa8d3bc80c in std::__invoke_result<void (c10d::detail::BackgroundThread::*)(), c10d::detail::BackgroundThread*>::type std::__invoke<void (c10d::detail::BackgroundThread::*)(), c10d::detail::BackgroundThread*>(void (c10d::detail::BackgroundThread::*&&)(), c10d::detail::BackgroundThread*&&) fbcode/third-party-buck/platform010/build/libgcc/include/c++/trunk/bits/invoke.h:96
    pytorch#9 0x7faa8d3bc7e1 in void std::thread::_Invoker<std::tuple<void (c10d::detail::BackgroundThread::*)(), c10d::detail::BackgroundThread*>>::_M_invoke<0ul, 1ul>(std::_Index_tuple<0ul, 1ul>) fbcode/third-party-buck/platform010/build/libgcc/include/c++/trunk/bits/std_thread.h:253
    pytorch#10 0x7faa8d3bc7a4 in std::thread::_Invoker<std::tuple<void (c10d::detail::BackgroundThread::*)(), c10d::detail::BackgroundThread*>>::operator()() fbcode/third-party-buck/platform010/build/libgcc/include/c++/trunk/bits/std_thread.h:260
    pytorch#11 0x7faa8d3bc608 in std::thread::_State_impl<std::thread::_Invoker<std::tuple<void (c10d::detail::BackgroundThread::*)(), c10d::detail::BackgroundThread*>>>::_M_run() fbcode/third-party-buck/platform010/build/libgcc/include/c++/trunk/bits/std_thread.h:211
    pytorch#12 0x7faa436df5b4 in execute_native_thread_routine (/usr/local/fbcode/platform010/lib/libstdc++.so.6+0xdf5b4) (BuildId: 14a4eafe0cdc86af9a949a6c0c27bf21a033e047)
    pytorch#13 0x56744a in asan_thread_start(void*) ubsan.c
    pytorch#14 0x7faa43b2cf5b in __GI___clone3 (/usr/local/fbcode/platform010/lib/libc.so.6+0x12cf5b) (BuildId: 93cdceeb8322234c38e1f2c93ad0ff10c7632fa6)
```
With fix, no leak

Differential Revision: D68566104
pytorchmergebot pushed a commit that referenced this issue Mar 3, 2025
Fix nightly build failure during arm64 docker build (since 02.21.2025): https://github.com/pytorch/pytorch/actions/runs/13452177170/job/37588508155#step:12:851

Error:
```
#10 73.62 Segmentation fault (core dumped)
#10 73.67 qemu: uncaught target signal 11 (Segmentation fault) - core dumped
#10 73.85 Segmentation fault (core dumped)
#10 73.85 dpkg: error processing package libc-bin (--configure):
#10 73.85  installed libc-bin package post-installation script subprocess returned error exit status 139
```
Looks like we are hitting: moby/buildkit#5783

Update setup-qemu and buildkit actions to v3 and buildkit to v0.19.0

Please note: CUDA 12.8 error is not related to this failure in nightly cpu arm64. Looks like we are trying to install release torch when running on PR. Cuda 12.8 build is not released yet, hence a failure. Will send followup to make sure we are using nightly torch when running on PR.

Pull Request resolved: #148372
Approved by: https://github.com/seemethere
majing921201 pushed a commit to majing921201/pytorch that referenced this issue Mar 4, 2025
Fix nightly build failure during arm64 docker build (since 02.21.2025): https://github.com/pytorch/pytorch/actions/runs/13452177170/job/37588508155#step:12:851

Error:
```
pytorch#10 73.62 Segmentation fault (core dumped)
pytorch#10 73.67 qemu: uncaught target signal 11 (Segmentation fault) - core dumped
pytorch#10 73.85 Segmentation fault (core dumped)
pytorch#10 73.85 dpkg: error processing package libc-bin (--configure):
pytorch#10 73.85  installed libc-bin package post-installation script subprocess returned error exit status 139
```
Looks like we are hitting: moby/buildkit#5783

Update setup-qemu and buildkit actions to v3 and buildkit to v0.19.0

Please note: CUDA 12.8 error is not related to this failure in nightly cpu arm64. Looks like we are trying to install release torch when running on PR. Cuda 12.8 build is not released yet, hence a failure. Will send followup to make sure we are using nightly torch when running on PR.

Pull Request resolved: pytorch#148372
Approved by: https://github.com/seemethere
pytorchmergebot pushed a commit to min-jean-cho/pytorch that referenced this issue Mar 5, 2025
Fix nightly build failure during arm64 docker build (since 02.21.2025): https://github.com/pytorch/pytorch/actions/runs/13452177170/job/37588508155#step:12:851

Error:
```
pytorch#10 73.62 Segmentation fault (core dumped)
pytorch#10 73.67 qemu: uncaught target signal 11 (Segmentation fault) - core dumped
pytorch#10 73.85 Segmentation fault (core dumped)
pytorch#10 73.85 dpkg: error processing package libc-bin (--configure):
pytorch#10 73.85  installed libc-bin package post-installation script subprocess returned error exit status 139
```
Looks like we are hitting: moby/buildkit#5783

Update setup-qemu and buildkit actions to v3 and buildkit to v0.19.0

Please note: CUDA 12.8 error is not related to this failure in nightly cpu arm64. Looks like we are trying to install release torch when running on PR. Cuda 12.8 build is not released yet, hence a failure. Will send followup to make sure we are using nightly torch when running on PR.

Pull Request resolved: pytorch#148372
Approved by: https://github.com/seemethere
akashveramd pushed a commit to akashveramd/pytorch that referenced this issue Apr 9, 2025
* Added bwd data v3r1: breaking down compute into a series of load balanced GEMM, and launch in a single kernel
* Added bwd data v4r1: like v3r1, but launch GEMMs in multiple kernels
* Tweaked v1r1  and v1r2 (atomic) on AMD GPU
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants
0