10000 tensor.dtype.to_complex() crashes kernel after ~100 calls in ipython kernel · Issue #124868 · pytorch/pytorch · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

tensor.dtype.to_complex() crashes kernel after ~100 calls in ipython kernel #124868

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
RichieHakim opened this issue Apr 24, 2024 · 14 comments
Closed
Labels
module: complex Related to complex number support in PyTorch module: crash Problem manifests as a hard crash, as opposed to a RuntimeError module: python frontend For issues relating to PyTorch's Python frontend triaged This issue has been looked at a team member, and triaged and prioritized into an appropriate module
Milestone

Comments

@RichieHakim
Copy link
RichieHakim commented Apr 24, 2024

🐛 Describe the bug

The following block of code consistently crashes an ipython kernel without an error traceback after ~100 iterations in the loop:

import torch
for i in range(1000):
    d = torch.float32.to_complex()

Running on torch==2.2.2+cu121, and I tried in on a couple google colab instance with torch==2.2.1+cu121 and torch==2.2.0+cpu with the same result.
It crashes with all real dtypes.

It does not crash in a terminal python kernel, but does sometimes cause a segmentation fault after the script ends.

For anyone looking for a workaround, you can just use this:

def dtype_to_complex(dtype: torch.dtype) -> torch.dtype:
    """
    Converts a real torch dtype to a complex dtype. \n
    RH 2024

    Args:
        dtype (torch.dtype): 
            Real dtype to convert to complex dtype.

    Returns:
        (torch.dtype): 
            complex_dtype (torch.dtype):
                Complex dtype.
    """
    map = {
        torch.float16: torch.complex32,
        torch.bfloat16: torch.complex64,
        torch.float32: torch.complex64,
        torch.float64: torch.complex128,
    }
    if dtype not in map:
        raise ValueError(f'{dtype} does not have a complex equivalent in map.')
    return map[dtype]

Versions

environment:

python collect_env.py
Collecting environment information...
PyTorch version: 2.2.2+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.26.4
Libc version: glibc-2.31

Python version: 3.11.3 (main, May 15 2023, 15:45:52) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-105-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 11.7.64
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090
Nvidia driver version: 535.171.04
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Byte Order:                         Little Endian
Address sizes:                      46 bits physical, 48 bits virtual
CPU(s):                             36
On-line CPU(s) list:                0-35
Thread(s) per core:                 2
Core(s) per socket:                 18
Socket(s):                          1
NUMA node(s):                       1
Vendor ID:                          GenuineIntel
CPU family:                         6
Model:                              85
Model name:                         Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz
Stepping:                           7
CPU MHz:                            3000.000
CPU max MHz:                        4800.0000
CPU min MHz:                        1200.0000
BogoMIPS:                           6000.00
Virtualization:                     VT-x
L1d cache:                          576 KiB
L1i cache:                          576 KiB
L2 cache:                           18 MiB
L3 cache:                           24.8 MiB
NUMA node0 CPU(s):                  0-35
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit:        KVM: Mitigation: VMX disabled
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed:             Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Mitigation; TSX disabled
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault cat_l3 cdp_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_pkg_req avx512_vnni md_clear flush_l1d arch_capabilities

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] 
[pip3] onnx-graphsurgeon==0.3.27
[pip3] onnx-simplifier==0.4.33
[pip3] onnx2torch==1.5.13
[pip3] onnxconverter-common==1.13.0
[pip3] 
[pip3] onnxruntime-gpu==1.15.1
[pip3] sk2torch==1.2.0
[pip3] skl2onnx==1.16.0
[pip3] torch==2.2.2
[pip3] torchaudio==2.2.2
[pip3] torchkbnufft==1.4.0
[pip3] torchvision==0.17.2
[pip3] triton==2.2.0
[conda] blas                      1.0                         mkl  
[conda] mkl                       2023.1.0         h213fc3f_46344  
[conda] mkl-service               2.4.0           py311h5eee18b_1  
[conda] mkl_fft                   1.3.8           py311h5eee18b_0  
[conda] mkl_random                1.2.4           py311hdb19cb5_0  
[conda] numpy                     1.26.4          py311h08b1b3b_0  
[conda] numpy-base                1.26.4          py311hf175353_0  
[conda] onnx2torch                1.5.13                   pypi_0    pypi
[conda] sk2torch                  1.2.0                    pypi_0    pypi
[conda] torch                     2.2.2                    pypi_0    pypi
[conda] torchaudio                2.2.2                    pypi_0    pypi
[conda] torchkbnufft              1.4.0                    pypi_0    pypi
[conda] torchvision               0.17.2                   pypi_0    pypi
[conda] triton                    2.2.0                    pypi_0    pypi

cc @ezyang @anjali411 @dylanbespalko @mruberry @lezcano @nikitaved @amjames @albanD

@malfet malfet added needs reproduction Someone 8000 else needs to try reproducing the issue given the instructions. No action needed from user module: crash Problem manifests as a hard crash, as opposed to a RuntimeError triage review and removed needs reproduction Someone else needs to try reproducing the issue given the instructions. No action needed from user labels Apr 24, 2024
@malfet malfet self-assigned this Apr 24, 2024
@malfet
Copy link
Contributor
malfet commented Apr 24, 2024

[Edit] Have a stable reproducer

import torch
import gc
import sys

for i in range(50):
    d = torch.float32.to_complex()
    print(i, sys.getrefcount(d))
print("That's all folks!")
print(gc.get_referrers(d))

Backtrace:

(lldb) bt
* thread #1, name = 'pt_main_thread', stop reason = signal SIGSEGV: invalid address (fault address: 0x58)
  * frame #0: 0x000000000058abeb python`dict_repr + 491
    frame #1: 0x000000000058207c python`list_repr + 588
    frame #2: 0x0000000000547441 python`PyObject_Str + 353
    frame #3: 0x00000000005d894b python`PyFile_WriteObject + 59
    frame #4: 0x00000000005d7d85 python`builtin_print + 261
    frame #5: 0x0000000000512267 python`_PyEval_EvalFrameDefault + 14743
    frame #6: 0x00000000005c82ce python`_PyEval_Vector + 302
    frame #7: 0x00000000005c79cf python`PyEval_EvalCode + 159
    frame #8: 0x00000000005e8807 python`run_eval_code_obj + 71
    frame #9: 0x00000000005e4e40 python`run_mod + 96
    frame #10: 0x00000000005f9132 python`pyrun_file + 130
    frame #11: 0x00000000005f871f python`_PyRun_SimpleFileObject + 415
    frame #12: 0x00000000005f8473 python`_PyRun_AnyFileObject + 67
    frame #13: 0x00000000005f2fee python`Py_RunMain + 750
    frame #14: 0x00000000005b6e19 python`Py_BytesMain + 57
    frame #15: 0x00007ffff7c51083 libc.so.6`__libc_start_main(main=(python`main), argc=2, argv=0x00007fffffffdf08, init=<unavailable>, fini=<unavailable>, rtld_fini=<unavailable>, stack_end=0x00007fffffffdef8) at libc-start.c:308:16
    frame #16: 0x00000000005b6c6f python`_start + 41

@malfet malfet added the module: python frontend For issues relating to PyTorch's Python frontend label Apr 24, 2024
@malfet malfet removed their assignment Apr 24, 2024
@tringwald
Copy link
Collaborator

I can also repro the crash. Probably caused here, as the returned object is never Py_INCREF'd in

PyObject* THPDtype_to_complex(PyObject* _self, PyObject* noargs) {
auto* self = (THPDtype*)_self;
auto scalar_type = self->scalar_type;
if (!at::isComplexType(self->scalar_type)) {
scalar_type = at::toComplexType(self->scalar_type);
}
return (PyObject*)torch::getTHPDtype(scalar_type);
}

@malfet
Copy link
Contributor
malfet commented Apr 24, 2024

@tringwald do you want to submit a fix or should I?

@malfet malfet self-assigned this Apr 24, 2024
@malfet malfet added the module: complex Related to complex number support in PyTorch label Apr 24, 2024
@tringwald
Copy link
Collaborator

@tringwald do you want to submit a fix or should I?

I can submit a PR if you want. There also seem to be some other occurrences where the output of getTHPDtype is not incref'd ...

@malfet malfet added this to the 2.3.1 milestone Apr 24, 2024
@malfet
Copy link
Contributor
malfet commented Apr 24, 2024

Following fixes it

diff --git a/torch/csrc/Dtype.cpp b/torch/csrc/Dtype.cpp
index 8eee2a02fae..d043b9096fa 100644
--- a/torch/csrc/Dtype.cpp
+++ b/torch/csrc/Dtype.cpp
@@ -79,7 +79,9 @@ PyObject* THPDtype_to_real(PyObject* _self, PyObject* noargs) {
   if (!at::isFloatingType(self->scalar_type)) {
     scalar_type = at::toRealValueType(self->scalar_type);
   }
-  return (PyObject*)torch::getTHPDtype(scalar_type);
+  auto rc = reinterpret_cast<PyObject*>(torch::getTHPDtype(scalar_type));
+  Py_INCREF(rc);
+  return rc;
 }
 
 PyObject* THPDtype_to_complex(PyObject* _self, PyObject* noargs) {
@@ -88,7 +90,9 @@ PyObject* THPDtype_to_complex(PyObject* _self, PyObject* noargs) {
   if (!at::isComplexType(self->scalar_type)) {
     scalar_type = at::toComplexType(self->scalar_type);
   }
-  return (PyObject*)torch::getTHPDtype(scalar_type);
+  auto rc = reinterpret_cast<PyObject*>(torch::getTHPDtype(scalar_type));
+  Py_INCREF(rc);
+  return rc;
 }

@malfet
Copy link
Contributor
malfet commented Apr 24, 2024

I can submit a PR if you want. There also seem to be some other occurrences where the output of getTHPDtype is not incref'd ...

Up to you, I have PR ready as well as regression test, but as you've found it, please go ahead and I'll be happy to review

@tringwald
Copy link
Collaborator

If you've already written a test, you can submit the PR. I was just wondering if this here is also a potential problem:

static void set_type(
PyTensorType& type_obj,
Backend backend,
ScalarType scalarType) {
// This field is lazily initialized from backend and scalar_type
type_obj.backend = static_cast<int>(backend);
type_obj.scalar_type = static_cast<int>(scalarType);
type_obj.layout = torch::getTHPLayout(layout_from_backend(backend));
type_obj.dtype = torch::getTHPDtype(scalarType);
type_obj.is_cuda =
(backend == at::Backend::CUDA || backend == at::Backend::SparseCUDA);
type_obj.is_xpu =
(backend == at::Backend::XPU || backend == at::Backend::SparseXPU);
}

@malfet malfet added triaged This issue has been looked at a team member, and triaged and prioritized into an appropriate module and removed triage review labels Apr 24, 2024
@albanD
Copy link
Collaborator
albanD commented Apr 24, 2024

getTHPLayout() just above has the same issue btw.
Similarly, most getter API in CPython C API return borrowed reference.
We should update this code using the helper functions we have in

#define Py_NewRef(obj) _Py_NewRef(_PyObject_CAST(obj))
to read:

   type_obj.layout = Py_NewRef(torch::getTHPLayout(layout_from_backend(backend))); 
   type_obj.dtype = Py_NewRef(torch::getTHPDtype(scalarType)); 

@malfet
Copy link
Contributor
malfet commented Apr 29, 2024

to read:

   type_obj.layout = Py_NewRef(torch::getTHPLayout(layout_from_backend(backend))); 
   type_obj.dtype = Py_NewRef(torch::getTHPDtype(scalarType)); 

This is OK, but not necessary, as struct can have a borrowed reference, as runtime will auto-increase it whenever it wants to bind it to a new variable

@malfet malfet reopened this Apr 30, 2024
@malfet malfet removed their assignment Apr 30, 2024
@malfet
Copy link
Contributor
malfet commented Apr 30, 2024

Keeping it open to search for other incref/decref mishaps, but #125154 should have fixed the crash

@albanD
Copy link
Collaborator
albanD commented Apr 30, 2024

as struct can have a borrowed reference

No they cannot!

See the PR above with the rest of the fix

@RichieHakim
Copy link
Author

I just want to say thank you. I'm very impressed with everyone's work here and the speed with which it was done.

pytorchmergebot pushed a commit that referenced this issue May 2, 2024
Finish fixing #124868
re-use our wrap() utils as much as possible and NewRef in other places.
Pull Request resolved: #125271
Approved by: https://github.com/colesbury
@albanD
Copy link
Collaborator
albanD commented May 2, 2024

With the second PR, dtype/layout/memory_format are not consistent and fixed!

@albanD albanD closed this as completed May 2, 2024
petrex pushed a commit to petrex/pytorch that referenced this issue May 3, 2024
By using `Py_NewRef`

Also, wrap `THPDtype_to_real`/`THPDtype_to_complex` calls with `HANDLE_TH_ERRORS`

Add regression test for the above issues, by calling to_complex for integral dtypes, that raises an exception and by preserving reference count to the same to_complex/to_real call to detect if leak is happeneing.

Replace
```cpp
auto dtype = (PyObject*)torch::getTHPDtype(current_dtype);
Py_INCREF(dtype);
return dtype;
```
with a more compact/streamlined equivalent
```cpp
return Py_NewRef(torch::getTHPDtype(current_dtype));
```

Fixes pytorch#124868

Pull Request resolved: pytorch#125154
Approved by: https://github.com/Skylion007, https://github.com/albanD
petrex pushed a commit to petrex/pytorch that referenced this issue May 3, 2024
…5271)

Finish fixing pytorch#124868
re-use our wrap() utils as much as possible and NewRef in other places.
Pull Request resolved: pytorch#125271
Approved by: https://github.com/colesbury
pytorchbot pushed a commit that referenced this issue May 13, 2024
By using `Py_NewRef`

Also, wrap `THPDtype_to_real`/`THPDtype_to_complex` calls with `HANDLE_TH_ERRORS`

Add regression test for the above issues, by calling to_complex for integral dtypes, that raises an exception and by preserving reference count to the same to_complex/to_real call to detect if leak is happeneing.

Replace
```cpp
auto dtype = (PyObject*)torch::getTHPDtype(current_dtype);
Py_INCREF(dtype);
return dtype;
```
with a more compact/streamlined equivalent
```cpp
return Py_NewRef(torch::getTHPDtype(current_dtype));
```

Fixes #124868

Pull Request resolved: #125154
Approved by: https://github.com/Skylion007, https://github.com/albanD

(cherry picked from commit 744f341)
huydhn pushed a commit to huydhn/pytorch that referenced this issue May 14, 2024
By using `Py_NewRef`

Also, wrap `THPDtype_to_real`/`THPDtype_to_complex` calls with `HANDLE_TH_ERRORS`

Add regression test for the above issues, by calling to_complex for integral dtypes, that raises an exception and by preserving reference count to the same to_complex/to_real call to detect if leak is happeneing.

Replace
```cpp
auto dtype = (PyObject*)torch::getTHPDtype(current_dtype);
Py_INCREF(dtype);
return dtype;
```
with a more compact/streamlined equivalent
```cpp
return Py_NewRef(torch::getTHPDtype(current_dtype));
```

Fixes pytorch#124868

Pull Request resolved: pytorch#125154
Approved by: https://github.com/Skylion007, https://github.com/albanD

(cherry picked from commit 744f341)
huydhn pushed a commit that referenced this issue May 14, 2024
By using `Py_NewRef`

Also, wrap `THPDtype_to_real`/`THPDtype_to_complex` calls with `HANDLE_TH_ERRORS`

Add regression test for the above issues, by calling to_complex for integral dtypes, that raises an exception and by preserving reference count to the same to_complex/to_real call to detect if leak is happeneing.

Replace
```cpp
auto dtype = (PyObject*)torch::getTHPDtype(current_dtype);
Py_INCREF(dtype);
return dtype;
```
with a more compact/streamlined equivalent
```cpp
return Py_NewRef(torch::getTHPDtype(current_dtype));
```

Fixes #124868

Pull Request resolved: #125154
Approved by: https://github.com/Skylion007, https://github.com/albanD
atalman pushed a commit that referenced this issue May 14, 2024
* Fix ref leak in `dtype.to_complex()`/`to_real()` (#125154)

By using `Py_NewRef`

Also, wrap `THPDtype_to_real`/`THPDtype_to_complex` calls with `HANDLE_TH_ERRORS`

Add regression test for the above issues, by calling to_complex for integral dtypes, that raises an exception and by preserving reference count to the same to_complex/to_real call to detect if leak is happeneing.

Replace
```cpp
auto dtype = (PyObject*)torch::getTHPDtype(current_dtype);
Py_INCREF(dtype);
return dtype;
```
with a more compact/streamlined equivalent
```cpp
return Py_NewRef(torch::getTHPDtype(current_dtype));
```

Fixes #124868

Pull Request resolved: #125154
Approved by: https://github.com/Skylion007, https://github.com/albanD

(cherry picked from commit 744f341)

* Revert "Fix ref leak in `dtype.to_complex()`/`to_real()` (#125154)"

This reverts commit a1b04d8.

* Fix ref leak in `dtype.to_complex()`/`to_real()` (#125154)

By using `Py_NewRef`

Also, wrap `THPDtype_to_real`/`THPDtype_to_complex` calls with `HANDLE_TH_ERRORS`

Add regression test for the above issues, by calling to_complex for integral dtypes, that raises an exception and by preserving reference count to the same to_complex/to_real call to detect if leak is happeneing.

Replace
```cpp
auto dtype = (PyObject*)torch::getTHPDtype(current_dtype);
Py_INCREF(dtype);
return dtype;
```
with a more compact/streamlined equivalent
```cpp
return Py_NewRef(torch::getTHPDtype(current_dtype));
```

Fixes #124868

Pull Request resolved: #125154
Approved by: https://github.com/Skylion007, https://github.com/albanD

(cherry picked from commit 744f341)

* Revert "Fix ref leak in `dtype.to_complex()`/`to_real()` (#125154)"

This reverts commit 5a28bad.

* Refactor autocast C++ APIs to be device-agnostic (#124359)

# Motivation
This PR aims to refactor autocast **C++** APIs to be device-agnostic and deprecate the device-specific autocast  **C++** APIs.
In C++ side,
- `is_enabled()` -> `is_enabled(device_type)`.
- `set_enabled(new_enabled)` -> `set_enabled(device_type, new_enabled)`.
- `get_autocast_dtype()` -> `get_autocast_dtype(device_type)`
- `set_autocast_dtype(dtype)` -> `set_autocast_dtype(device_type, dtype)`

These following C++ APIs are deprecated and should be removed in PyTorch 2.5
- `is_cpu_enabled`
- `set_cpu_enabled`
- `get_autocast_cpu_dtype`
- `set_autocast_cpu_dtype`
- `is_xpu_enabled`
- `set_xpu_enabled`
- `get_autocast_xpu_dtype`
- `set_autocast_xpu_dtype`
- `is_ipu_enabled`
- `set_ipu_enabled`
- `get_autocast_ipu_dtype`
- `set_autocast_ipu_dtype`
- `is_hpu_enabled`
- `set_hpu_enabled`
- `get_autocast_hpu_dtype`
- `set_autocast_hpu_dtype`
- `is_xla_enabled`
- `set_xla_enabled`
- `get_autocast_xla_dtype`
- `set_autocast_xla_dtype`
- `is_privateuseone_enabled`
- `set_privateuseone_enabled`
- `get_autocast_privateuseone_dtype`
- `set_autocast_privateuseone_dtype`

In Python side,
provide 4 generic autocast APIs:
- `torch.is_autocast_enabled(device_type)`
- `torch.set_autocast_enabled(device_type, new_enabled)`
- `torch.get_autocast_dtype(device_type)`
- `torch.set_autocast_dtype(device_type, dtype)`

# Additional Context
We will submit another PR to refactor autocast **Python** APIs based on this PR.

Pull Request resolved: #124359
Approved by: https://github.com/jgong5, https://github.com/albanD

* refactor autocast python APIs (#124479)

Refactor autocast usage scenario in `torch/amp/autocast_mode.py` and `torch/utils/checkpoint.py` to fix the bug - convention conflict between `torch.xxx.get_autocast_xxx_dtype` defined in `autocast_mode.py` and `torch.xxx.get_autocast_dtype` defined in `checkpoint.py`.

Use device-agnostic APIs like `torch.get_autocast_dtype`, ..., instead.

Pull Request resolved: #124479
Approved by: https://github.com/jgong5, https://github.com/gujinghui, https://github.com/EikanWang, https://github.com/albanD
ghstack dependencies: #124359

* Fix ref leak in `dtype.to_complex()`/`to_real()` (#125154)

By using `Py_NewRef`

Also, wrap `THPDtype_to_real`/`THPDtype_to_complex` calls with `HANDLE_TH_ERRORS`

Add regression test for the above issues, by calling to_complex for integral dtypes, that raises an exception and by preserving reference count to the same to_complex/to_real call to detect if leak is happeneing.

Replace
```cpp
auto dtype = (PyObject*)torch::getTHPDtype(current_dtype);
Py_INCREF(dtype);
return dtype;
```
with a more compact/streamlined equivalent
```cpp
return Py_NewRef(torch::getTHPDtype(current_dtype));
```

Fixes #124868

Pull Request resolved: #125154
Approved by: https://github.com/Skylion007, https://github.com/albanD

* Revert "refactor autocast python APIs (#124479)"

This reverts commit 495b0c9.

* Revert "Refactor autocast C++ APIs to be device-agnostic (#124359)"

This reverts commit 83106b7.

---------

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Co-authored-by: Huy Do <huydhn@gmail.com>
Co-authored-by: Yu, Guangye <guangye.yu@intel.com>
@PaliC
Copy link
Contributor
PaliC commented May 31, 2024

Validated that @malfet 's stable repro is fixed with 2.3.1

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
module: complex Related to complex number support in PyTorch module: crash Problem manifests as a hard crash, as opposed to a RuntimeError module: python frontend For issues relating to PyTorch's Python frontend triaged This issue has been looked at a team member, and triaged and prioritized into an appropriate module
Projects
None yet
Development

Successfully merging a pull request may close this issue.

5 participants
0