8000 Don't support legacy Python · Issue #2 · pytorch/pytorch · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Don't support legacy Python #2

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
bartvm opened this issue Aug 16, 2016 · 5 comments
Closed

Don't support legacy Python #2

bartvm opened this issue Aug 16, 2016 · 5 comments

Comments

@bartvm
Copy link
Contributor
bartvm commented Aug 16, 2016

There is really no reason to support Python 2. Python 3 has been out for 8 years now. There are plenty of good articles written about this. Maintaining a dual codebase is a going to be a major pain and it prevents you from using a whole bunch of new Python 3 features (six only gets you so far).

@apaszke
Copy link
Contributor
apaszke commented Sep 9, 2016

This looks like a reason to me:

pip downloads

pip scientific downloads

@soumith soumith closed this as completed Sep 10, 2016
Jiaming-Liu pushed a commit to Jiaming-Liu/pytorch that referenced this issue May 18, 2017
tfriedel pushed a commit to tfriedel/pytorch that referenced this issue Aug 9, 2017
tfriedel pushed a commit to tfriedel/pytorch that referenced this issue Aug 9, 2017
soumith pushed a commit that referenced this issue Oct 5, 2017
drisspg added a commit to drisspg/pytorch that referenced this issue Feb 13, 2025
…pytorch#146372)

Summary:
Pull Request resolved: pytorch#146372

Pull Request resolved: pytorch#144120

# Summary

### Sticky points

Cuda-graph rng handling has changed / deviated from original implementation. We will be left with a dangling 'offset' val and confusing naming due to BC

## Dependencies
- Flash PR: Dao-AILab/flash-attention#1419

### Other Points
- The BC linter is complaining about losing generate.py and its functions which is not real BC surface
cc albanD

imported-using-ghimport

Test Plan:
Imported from OSS

Building in dev
`buck build @//mode/dev-nosan -c fbcode.nvcc_arch=h100a  //caffe2:ATen-cu --show-full-output    `

I and Nming the .so I do see that the flash symbols are correctly named:
```
0000000001c3dfb0 t pytorch_flash::run_mha_bwd(pytorch_flash::Flash_bwd_params&, CUstream_st*)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
0000000001c36080 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#2}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#6}::operator()() const
0000000001c360e0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#2}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
0000000001c35fc0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#6}::operator()() const
0000000001c36020 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
```

Reviewed By: vkuzo

Differential Revision: D68502879

Pulled By: drisspg
pytorch-bot bot pushed a commit that referenced this issue Feb 18, 2025
…#146372)

Summary:
Pull Request resolved: #146372

Pull Request resolved: #144120

# Summary

### Sticky points

Cuda-graph rng handling has changed / deviated from original implementation. We will be left with a dangling 'offset' val and confusing naming due to BC

## Dependencies
- Flash PR: Dao-AILab/flash-attention#1419

### Other Points
- The BC linter is complaining about losing generate.py and its functions which is not real BC surface
cc albanD

imported-using-ghimport

Test Plan:
Imported from OSS

Building in dev
`buck build @//mode/dev-nosan -c fbcode.nvcc_arch=h100a  //caffe2:ATen-cu --show-full-output    `

I and Nming the .so I do see that the flash symbols are correctly named:
```
0000000001c3dfb0 t pytorch_flash::run_mha_bwd(pytorch_flash::Flash_bwd_params&, CUstream_st*)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
0000000001c36080 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#2}::operator()() const::{lambda()#1}::operator()() const::{lambda()#6}::operator()() const
0000000001c360e0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#2}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
0000000001c35fc0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#6}::operator()() const
0000000001c36020 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
```

Reviewed By: vkuzo

Differential Revision: D68502879

Pulled By: drisspg
drisspg added a commit to drisspg/pytorch that referenced this issue Feb 18, 2025
…pytorch#146372)

Summary:
Pull Request resolved: pytorch#146372

Pull Request resolved: pytorch#144120

# Summary

### Sticky points

Cuda-graph rng handling has changed / deviated from original implementation. We will be left with a dangling 'offset' val and confusing naming due to BC

## Dependencies
- Flash PR: Dao-AILab/flash-attention#1419

### Other Points
- The BC linter is complaining about losing generate.py and its functions which is not real BC surface
cc albanD

imported-using-ghimport

Test Plan:
Imported from OSS

Building in dev
`buck build @//mode/dev-nosan -c fbcode.nvcc_arch=h100a  //caffe2:ATen-cu --show-full-output    `

I and Nming the .so I do see that the flash symbols are correctly named:
```
0000000001c3dfb0 t pytorch_flash::run_mha_bwd(pytorch_flash::Flash_bwd_params&, CUstream_st*)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
0000000001c36080 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#2}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#6}::operator()() const
0000000001c360e0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#2}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
0000000001c35fc0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#6}::operator()() const
0000000001c36020 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
```

Reviewed By: vkuzo

Differential Revision: D68502879

Pulled By: drisspg
pytorch-bot bot pushed a commit that referenced this issue Feb 23, 2025
…#146372)

Summary:
Pull Request resolved: #146372

Pull Request resolved: #144120

# Summary

### Sticky points

Cuda-graph rng handling has changed / deviated from original implementation. We will be left with a dangling 'offset' val and confusing naming due to BC

## Dependencies
- Flash PR: Dao-AILab/flash-attention#1419

### Other Points
- The BC linter is complaining about losing generate.py and its functions which is not real BC surface
cc albanD

imported-using-ghimport

Test Plan:
Imported from OSS

Building in dev
`buck build @//mode/dev-nosan -c fbcode.nvcc_arch=h100a  //caffe2:ATen-cu --show-full-output    `

I and Nming the .so I do see that the flash symbols are correctly named:
```
0000000001c3dfb0 t pytorch_flash::run_mha_bwd(pytorch_flash::Flash_bwd_params&, CUstream_st*)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
0000000001c36080 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#2}::operator()() const::{lambda()#1}::operator()() const::{lambda()#6}::operator()() const
0000000001c360e0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#2}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
0000000001c35fc0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#6}::operator()() const
0000000001c36020 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
```

Reviewed By: vkuzo

Differential Revision: D68502879

Pulled By: drisspg
drisspg added a commit to drisspg/pytorch that referenced this issue Feb 23, 2025
…pytorch#146372)

Summary:
Pull Request resolved: pytorch#146372

Pull Request resolved: pytorch#144120

# Summary

### Sticky points

Cuda-graph rng handling has changed / deviated from original implementation. We will be left with a dangling 'offset' val and confusing naming due to BC

## Dependencies
- Flash PR: Dao-AILab/flash-attention#1419

### Other Points
- The BC linter is complaining about losing generate.py and its functions which is not real BC surface
cc albanD

imported-using-ghimport

Test Plan:
Imported from OSS

Building in dev
`buck build @//mode/dev-nosan -c fbcode.nvcc_arch=h100a  //caffe2:ATen-cu --show-full-output    `

I and Nming the .so I do see that the flash symbols are correctly named:
```
0000000001c3dfb0 t pytorch_flash::run_mha_bwd(pytorch_flash::Flash_bwd_params&, CUstream_st*)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
0000000001c36080 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#2}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#6}::operator()() const
0000000001c360e0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#2}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
0000000001c35fc0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#6}::operator()() const
0000000001c36020 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
```

Reviewed By: vkuzo

Differential Revision: D68502879

Pulled By: drisspg
drisspg added a commit to drisspg/pytorch that referenced this issue Feb 25, 2025
…pytorch#146372)

Summary:
Pull Request resolved: pytorch#146372

Pull Request resolved: pytorch#144120

# Summary

### Sticky points

Cuda-graph rng handling has changed / deviated from original implementation. We will be left with a dangling 'offset' val and confusing naming due to BC

## Dependencies
- Flash PR: Dao-AILab/flash-attention#1419

### Other Points
- The BC linter is complaining about losing generate.py and its functions which is not real BC surface
cc albanD

imported-using-ghimport

Test Plan:
Imported from OSS

Building in dev
`buck build @//mode/dev-nosan -c fbcode.nvcc_arch=h100a  //caffe2:ATen-cu --show-full-output    `

I and Nming the .so I do see that the flash symbols are correctly named:
```
0000000001c3dfb0 t pytorch_flash::run_mha_bwd(pytorch_flash::Flash_bwd_params&, CUstream_st*)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
0000000001c36080 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#2}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#6}::operator()() const
0000000001c360e0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#2}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
0000000001c35fc0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#6}::operator()() const
0000000001c36020 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
```

Reviewed By: vkuzo

Differential Revision: D68502879

Pulled By: drisspg
drisspg added a commit to drisspg/pytorch that referenced this issue Feb 25, 2025
…pytorch#146372)

Summary:
Pull Request resolved: pytorch#146372

Pull Request resolved: pytorch#144120

# Summary

### Sticky points

Cuda-graph rng handling has changed / deviated from original implementation. We will be left with a dangling 'offset' val and confusing naming due to BC

## Dependencies
- Flash PR: Dao-AILab/flash-attention#1419

### Other Points
- The BC linter is complaining about losing generate.py and its functions which is not real BC surface
cc albanD

imported-using-ghimport

Test Plan:
Imported from OSS

Building in dev
`buck build @//mode/dev-nosan -c fbcode.nvcc_arch=h100a  //caffe2:ATen-cu --show-full-output    `

I and Nming the .so I do see that the flash symbols are correctly named:
```
0000000001c3dfb0 t pytorch_flash::run_mha_bwd(pytorch_flash::Flash_bwd_params&, CUstream_st*)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
0000000001c36080 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#2}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#6}::operator()() const
0000000001c360e0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#2}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
0000000001c35fc0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#6}::operator()() const
0000000001c36020 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
```

Reviewed By: vkuzo

Differential Revision: D68502879

Pulled By: drisspg
pytorchmergebot pushed a commit that referenced this issue Feb 26, 2025
…#144120) (#146372)

Summary:

# Summary

### Sticky points

Cuda-graph rng handling has changed / deviated from original implementation. We will be left with a dangling 'offset' val and confusing naming due to BC

## Dependencies
- Flash PR: Dao-AILab/flash-attention#1419

### Other Points
- The BC linter is complaining about losing generate.py and its functions which is not real BC surface
cc albanD

imported-using-ghimport

Test Plan:
Imported from OSS

Building in dev
`buck build @//mode/dev-nosan -c fbcode.nvcc_arch=h100a  //caffe2:ATen-cu --show-full-output    `

I and Nming the .so I do see that the flash symbols are correctly named:
```
0000000001c3dfb0 t pytorch_flash::run_mha_bwd(pytorch_flash::Flash_bwd_params&, CUstream_st*)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
0000000001c36080 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#2}::operator()() const::{lambda()#1}::operator()() const::{lambda()#6}::operator()() const
0000000001c360e0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#2}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
0000000001c35fc0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#6}::operator()() const
0000000001c36020 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
```

Reviewed By: vkuzo

Differential Revision: D68502879

Pulled By: drisspg

Pull Request resolved: #146372
Approved by: https://github.com/jbschlosser
aditew01 pushed a commit that referenced this issue Feb 28, 2025
…#144120) (#146372)

Summary:

# Summary

### Sticky points

Cuda-graph rng handling has changed / deviated from original implementation. We will be left with a dangling 'offset' val and confusing naming due to BC

## Dependencies
- Flash PR: Dao-AILab/flash-attention#1419

### Other Points
- The BC linter is complaining about losing generate.py and its functions which is not real BC surface
cc albanD

imported-using-ghimport

Test Plan:
Imported from OSS

Building in dev
`buck build @//mode/dev-nosan -c fbcode.nvcc_arch=h100a  //caffe2:ATen-cu --show-full-output    `

I and Nming the .so I do see that the flash symbols are correctly named:
```
0000000001c3dfb0 t pytorch_flash::run_mha_bwd(pytorch_flash::Flash_bwd_params&, CUstream_st*)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
0000000001c36080 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#2}::operator()() const::{lambda()#1}::operator()() const::{lambda()#6}::operator()() const
0000000001c360e0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#2}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
0000000001c35fc0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#6}::operator()() const
0000000001c36020 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()#1}::operator()() const::{lambda()#1}::operator()() const::{lambda()#7}::operator()() const
```

Reviewed By: vkuzo

Differential Revision: D68502879

Pulled By: drisspg

Pull Request resolved: #146372
Approved by: https://github.com/jbschlosser
majing921201 pushed a commit to majing921201/pytorch that referenced this issue Mar 4, 2025
…pytorch#144120) (pytorch#146372)

Summary:

# Summary

### Sticky points

Cuda-graph rng handling has changed / deviated from original implementation. We will be left with a dangling 'offset' val and confusing naming due to BC

## Dependencies
- Flash PR: Dao-AILab/flash-attention#1419

### Other Points
- The BC linter is complaining about losing generate.py and its functions which is not real BC surface
cc albanD

imported-using-ghimport

Test Plan:
Imported from OSS

Building in dev
`buck build @//mode/dev-nosan -c fbcode.nvcc_arch=h100a  //caffe2:ATen-cu --show-full-output    `

I and Nming the .so I do see that the flash symbols are correctly named:
```
0000000001c3dfb0 t pytorch_flash::run_mha_bwd(pytorch_flash::Flash_bwd_params&, CUstream_st*)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
0000000001c36080 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#2}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#6}::operator()() const
0000000001c360e0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#2}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
0000000001c35fc0 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#6}::operator()() const
0000000001c36020 t pytorch_flash::run_mha_fwd(pytorch_flash::Flash_fwd_params&, CUstream_st*, bool)::$_0::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#1}::operator()() const::{lambda()pytorch#7}::operator()() const
```

Reviewed By: vkuzo

Differential Revision: D68502879

Pulled By: drisspg

Pull Request resolved: pytorch#146372
Approved by: https://github.com/jbschlosser
williamwen42 added a commit that referenced this issue Mar 18, 2025
…pproach"


Attempt #2 at #148736 using a traceback approach rather than a global variable approach.


cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames

[ghstack-poisoned]
williamwen42 added a commit that referenced this issue Mar 20, 2025
…pproach"


Attempt #2 at #148736 using a traceback approach rather than a global variable approach.


cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames

[ghstack-poisoned]
williamwen42 added a commit that referenced this issue Mar 20, 2025
…with traceback approach"


Attempt #2 at #148736 using a traceback approach rather than a global variable approach.


cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames

[ghstack-poisoned]
williamwen42 added a commit that referenced this issue Mar 20, 2025
…pproach"


Attempt #2 at #148736 using a traceback approach rather than a global variable approach.


cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames

[ghstack-poisoned]
YUNQIUGUO added a commit to YUNQIUGUO/pytorch that referenced this issue Mar 21, 2025
Summary:
fix another combo kernel logging error:

  File "/home/guorachel/local/fbsource/buck-out/v2/gen/fbcode/4bcbfa3ef39dbd6f/caffe2/test/inductor/__combo_kernels__/combo_kernels#link-tree/torch/_inductor/scheduler.py", line 2036, in _init
    self.create_combo_kernel_nodes(num_ck_nodes=None)
  File "/home/guorachel/local/fbsource/buck-out/v2/gen/fbcode/4bcbfa3ef39dbd6f/caffe2/test/inductor/__combo_kernels__/combo_kernels#link-tree/torch/_inductor/scheduler.py", line 3068, in create_combo_kernel_nodes
    log.debug("ComboKernels: Generating with num_ck_nodes = %d...", num_ck_nodes)
Message: 'ComboKernels: Generating with num_ck_nodes = %d...'
Arguments: (None,)

Test Plan:
Verified in test_combo_kernel.py

the logging error went away.

Differential Revision: D71655949
YUNQIUGUO added a commit to YUNQIUGUO/pytorch that referenced this issue Mar 21, 2025
Summary:
fix another combo kernel logging error:
```
  File "/home/guorachel/local/fbsource/buck-out/v2/gen/fbcode/4bcbfa3ef39dbd6f/caffe2/test/inductor/__combo_kernels__/combo_kernels#link-tree/torch/_inductor/scheduler.py", line 2036, in _init
    self.create_combo_kernel_nodes(num_ck_nodes=None)
  File "/home/guorachel/local/fbsource/buck-out/v2/gen/fbcode/4bcbfa3ef39dbd6f/caffe2/test/inductor/__combo_kernels__/combo_kernels#link-tree/torch/_inductor/scheduler.py", line 3068, in create_combo_kernel_nodes
    log.debug("ComboKernels: Generating with num_ck_nodes = %d...", num_ck_nodes)
Message: 'ComboKernels: Generating with num_ck_nodes = %d...'
Arguments: (None,)
```

Test Plan:
Verified in test_combo_kernel.py

the logging error went away.

Differential Revision: D71655949
pytorchmergebot pushed a commit that referenced this issue Mar 24, 2025
Summary:
fix another combo kernel logging error:

  File "/home/guorachel/local/fbsource/buck-out/v2/gen/fbcode/4bcbfa3ef39dbd6f/caffe2/test/inductor/__combo_kernels__/combo_kernels#link-tree/torch/_inductor/scheduler.py", line 2036, in _init
    self.create_combo_kernel_nodes(num_ck_nodes=None)
  File "/home/guorachel/local/fbsource/buck-out/v2/gen/fbcode/4bcbfa3ef39dbd6f/caffe2/test/inductor/__combo_kernels__/combo_kernels#link-tree/torch/_inductor/scheduler.py", line 3068, in create_combo_kernel_nodes
    log.debug("ComboKernels: Generating with num_ck_nodes = %d...", num_ck_nodes)
Message: 'ComboKernels: Generating with num_ck_nodes = %d...'
Arguments: (None,)

Test Plan:
Verified in test_combo_kernel.py

the logging error went away.

Differential Revision: D71655949

Pull Request resolved: #149772
Approved by: https://github.com/ColinPeppler, https://github.com/Skylion007
IvanKobzarev added a commit that referenced this issue Mar 26, 2025
pytorch-bot bot pushed a commit that referenced this issue Mar 28, 2025
fix lint and syntax errors for Navi31 CI
IvanKobzarev added a commit that referenced this issue Mar 31, 2025
IvanKobzarev added a commit that referenced this issue Apr 1, 2025
akashveramd pushed a commit to akashveramd/pytorch that referenced this issue Apr 9, 2025
akashveramd pushed a commit to akashveramd/pytorch that referenced this issue Apr 9, 2025
* wmma_op + unit test

* add arch limitation to wmma test

* change arch limitation

* Refactor + Add all type unit test(int4 compile failed)

* Add f32_16x16x16_bf16 unit test

* tempsave

* tempsave

* tempsave

* runtime bug, cannot find symbol

* workaround for incorrect HIP warpSize return value

* debugging

* tempsave

* Correctness OK, waiting for optimization

* Tidy up + format

* temp save

* temp save, reproduce the v_bfi_b32 issue

* add inline asm for wmmaop test

* tidy up

* clean some debug purpose code

* discard some codes

* clang format

* clang format

* compiler issue fixed + increase tile size

* navi3x_multipleD+example

* temp save

* workable

* batchedgemm[OK], groupconv[debug]

* groupconv: Sanity check[OK], Performance[Bad]

* navi3x_groupconv_need_optimization

* create necessary files

* save progress

* Add Inter-Row thread transfer

* save progress

* save debugging progress

* sanity check pass

* fix a host tensor bug and clean up flash-attn code

* format

* cancel unnecessary change

* cancel unnecessary change

* cancel unnecessary change

* temp save, add asm backend flag to amd_wmma

* Mat-A LDS Bypass sanity pass

* temp save

* gemm sanity fix

* Porting new blockwise gemm to flash attention

* Example branch provide to compiler team

* tempsave

* Fix a bug

* batched gemm ported

* conv A-skip lds ported

* Skip B-Lds real gemm

* Skip B Lds Gemm + MulD

* batched gemm, conv, skip b lds

* format

* Attn, skip b lds

* Change GridwiseOp nam

* fix a typo caused bug

* Skip A_Lds sanity pass, Skip B_Lds scratch occured

* Bug found, intra-row permute off caused

* bug found

* a fix

* disable buffer load due to incorrect 3rd dword

* update fmha config, no scratch generated

* update 3rd dword

* fmha config update

* FMHA, add support to gfx1101/gfx1102

* Merge origin dev (pytorch#2)

* [Navi3x] Fix Gridwise_multiple_d operation (pytorch#649)

* Add CMake Option "USE_OPT_NAVI3X"

* fix bug

* standardize docs (pytorch#655)

* Separate bibtex requirement from rocm-docs-core (pytorch#656)

* separate bibtex requirement from rocm-docs-core

* point requirements to source rocm-docs-core repo

* Add CMake Option "USE_OPT_NAVI3X" (pytorch#647)

* Add CMake Option "USE_OPT_NAVI3X"

* remove navi3x opt compile option from cmake script

* Conv + quantization + tanh  (pytorch#645)

* Rename file. Prepare to support another activation

* Add comment for quantization

* Extract out_elementop

* Add tanh example

* Add conv + bias + tanh quantization instance

* Add missing parameter

* Refine cmake

* Add external api and client example

* Extract variable in example

* Fix the comment

---------

Co-authored-by: zjing14 <zhangjing14@gmail.com>

* Add a denorm test fix (pytorch#603)

* Add type_convert implementations for bf16

* Add the fix for conv_fwd

* Add the fix for conv_bwd_data

* Add the fix for conv_bwd_weight

* Format

* Format

* Another format

* Add a macro to use workaround on MI200 only

* Format

---------

Co-authored-by: Rosty Geyyer <rosty.geyyer@amd.com>
Co-authored-by: zjing14 <zhangjing14@gmail.com>

* simplify karg in device/grid of split-k op (pytorch#644)

* simplify karg in device/grid split-k op

* fix mk_kn_mn instances

* add more instances

* use name from tensor layout

* fix 3rd dword of buffer source descriptor (pytorch#659)

* add fp64 instances (pytorch#658)

Co-authored-by: root <root@ctr-ubbsmc15.amd.com>

* Issue pytorch#666: Revert "simplify karg in device/grid of split-k op (pytorch#644)" (pytorch#665)

This reverts commit bb5530a.

* Groupnorm + swish external api (pytorch#668)

* Rename to proper naming

* Add example of groupnorm + swish

* Extract duplicate code in example

* Add groupnorm + swish instances

* Ractor instance generation, split into multiple cpp file

* Add external api and client example

* Refine profiler message

* Use ck math version of exp

* Refine problem size in example

* Add host version of exp

* add a marco to turn on/off denorm fix (off by default) (pytorch#673)

* add a marco to turn off denorm fix by default

* expose the marco

---------

Co-authored-by: root <root@ctr-ubbsmc15.amd.com>

* fixed quant example (pytorch#672)

Co-authored-by: root <root@ctr-ubbsmc15.amd.com>

* Add dependabot config and pin rocm-docs-core (pytorch#663)

* [gtest] suppress unsafe buffer warn (pytorch#670)

ref: ROCm/MIOpen#1912

* Add memory index guard in wmma device ops (pytorch#667)

* Add more macros to turn on/off denorm fix (pytorch#678)

Co-authored-by: Rosty Geyyer <rosty.geyyer@amd.com>

* Fix a typo (pytorch#676)

* Add (pytorch#677)

* Allow using ROCm release candidate compilers. (pytorch#679)

* enable use of rocm5.5 release candidate 4

* upgrade to ROCM5.5 RC5

* try fix the PUB_KEY error, remove the cmake-data package

* upgrade to latest cmake version

* use private dockerhub repo for rocm5.5 rc5

* add missing bracket

* add vector load check

* solve conflicts

---------

Co-authored-by: Sam Wu <sjwu@ualberta.ca>
Co-authored-by: Sam Wu <sam.wu2@amd.com>
Co-authored-by: rocking5566 <ChunYu.Lai@amd.com>
Co-authored-by: zjing14 <zhangjing14@gmail.com>
Co-authored-by: Rostyslav Geyyer <46627076+geyyer@users.noreply.github.com>
Co-authored-by: Rosty Geyyer <rosty.geyyer@amd.com>
Co-authored-by: carlushuang <carlus.huang@amd.com>
Co-authored-by: root <root@ctr-ubbsmc15.amd.com>
Co-authored-by: Jun Liu <Liu.Jun@amd.com>
Co-authored-by: Illia Silin <98187287+illsilin@users.noreply.github.com>

* Disable SkipLDS & Align AIT api (pytorch#3)

* fix layernorm, reduction Ops (pytorch#4)

* [Navi3x] Fix Gridwise_multiple_d operation (pytorch#649)

* Add CMake Option "USE_OPT_NAVI3X"

* fix bug

* standardize docs (pytorch#655)

* Separate bibtex requirement from rocm-docs-core (pytorch#656)

* separate bibtex requirement from rocm-docs-core

* point requirements to source rocm-docs-core repo

* Add CMake Option "USE_OPT_NAVI3X" (pytorch#647)

* Add CMake Option "USE_OPT_NAVI3X"

* remove navi3x opt compile option from cmake script

* Conv + quantization + tanh  (pytorch#645)

* Rename file. Prepare to support another activation

* Add comment for quantization

* Extract out_elementop

* Add tanh example

* Add conv + bias + tanh quantization instance

* Add missing parameter

* Refine cmake

* Add external api and client example

* Extract variable in example

* Fix the comment

---------

Co-authored-by: zjing14 <zhangjing14@gmail.com>

* Add a denorm test fix (pytorch#603)

* Add type_convert implementations for bf16

* Add the fix for conv_fwd

* Add the fix for conv_bwd_data

* Add the fix for conv_bwd_weight

* Format

* Format

* Another format

* Add a macro to use workaround on MI200 only

* Format

---------

Co-authored-by: Rosty Geyyer <rosty.geyyer@amd.com>
Co-authored-by: zjing14 <zhangjing14@gmail.com>

* simplify karg in device/grid of split-k op (pytorch#644)

* simplify karg in device/grid split-k op

* fix mk_kn_mn instances

* add more instances

* use name from tensor layout

* fix 3rd dword of buffer source descriptor (pytorch#659)

* add fp64 instances (pytorch#658)

Co-authored-by: root <root@ctr-ubbsmc15.amd.com>

* Issue pytorch#666: Revert "simplify karg in device/grid of split-k op (pytorch#644)" (pytorch#665)

This reverts commit bb5530a.

* Groupnorm + swish external api (pytorch#668)

* Rename to proper naming

* Add example of groupnorm + swish

* Extract duplicate code in example

* Add groupnorm + swish instances

* Ractor instance generation, split into multiple cpp file

* Add external api and client example

* Refine profiler message

* Use ck math version of exp

* Refine problem size in example

* Add host version of exp

* add a marco to turn on/off denorm fix (off by default) (pytorch#673)

* add a marco to turn off denorm fix by default

* expose the marco

---------

Co-authored-by: root <root@ctr-ubbsmc15.amd.com>

* fixed quant example (pytorch#672)

Co-authored-by: root <root@ctr-ubbsmc15.amd.com>

* Add dependabot config and pin rocm-docs-core (pytorch#663)

* [gtest] suppress unsafe buffer warn (pytorch#670)

ref: ROCm/MIOpen#1912

* Add memory index guard in wmma device ops (pytorch#667)

* Add more macros to turn on/off denorm fix (pytorch#678)

Co-authored-by: Rosty Geyyer <rosty.geyyer@amd.com>

* Fix a typo (pytorch#676)

* Add (pytorch#677)

* Allow using ROCm release candidate compilers. (pytorch#679)

* enable use of rocm5.5 release candidate 4

* upgrade to ROCM5.5 RC5

* try fix the PUB_KEY error, remove the cmake-data package

* upgrade to latest cmake version

* use private dockerhub repo for rocm5.5 rc5

* add missing bracket

* Disable SkipLDS & Align AIT api

* Update dependabot config (pytorch#682)

Co-authored-by: samjwu <samjwu@users.noreply.github.com>

* update attn api

* solve type_convert bug + enable

---------

Co-authored-by: Sam Wu <sjwu@ualberta.ca>
Co-authored-by: Sam Wu <sam.wu2@amd.com>
Co-authored-by: rocking5566 <ChunYu.Lai@amd.com>
Co-authored-by: zjing14 <zhangjing14@gmail.com>
Co-authored-by: Rostyslav Geyyer <46627076+geyyer@users.noreply.github.com>
Co-authored-by: Rosty Geyyer <rosty.geyyer@amd.com>
Co-authored-by: carlushuang <carlus.huang@amd.com>
Co-authored-by: root <root@ctr-ubbsmc15.amd.com>
Co-authored-by: Jun Liu <Liu.Jun@amd.com>
Co-authored-by: Illia Silin <98187287+illsilin@users.noreply.github.com>
Co-authored-by: samjwu <samjwu@users.noreply.github.com>
Co-authored-by: haocwang <Haocong.WANG@amd.com>

* fix typo

* Fix attention with causal mask

* multiple fix, try ait compile

* Add A/B not use LDS pipeline

* Clang format, Add gfx1101, gfx1102 support of FMHA example

* cancel change of format script

* 1. Enable 2-stage global Prefetch ( May cause VGPR spilling)
2. Enable FP16 accumulator blockwise_gemm

* clang-format

* 1. change blockwise gemm loopover direction from kmn to mnk ( ~1% improvement)
2. change kernel timing mode to 50 warmup + 50 timed repeat

* Update low level abstration of blockwise gemm wmma

* (2/5) bilinear gemm pass, perf bug: skip a lds has lower performance than skip b lds

* (3/5) batched gemm pass, perf bug: skip a lds has lower performance than skip b lds

* (4/5) grouped conv pass

* (5/5) attention pass, todo: debug lds perf bug

* AIT Attention API refactor (pytorch#8)

* sanity pass

* sanity pass 2

* confirm significant performance regression.

* turn on all instances

* turn off instance format

* Fix bug & tunning & format

* DML meta, self_attn+cross_attn

* sanity pass

* remove useless flag

* update tile and problem size used in AIT attention

* bug fix in grouped conv supporting check

* deprecate inline asm wmma

* Bug fix: double lds skip

* clang-format

* Fix errors in
1. example, fmha
2. gridwise pipeline
3. deviceop, fmha, change some containers from vector to array

* part2 of previous commit

* clang format

* API fix of gridwisegemmpipeline

* separate array base and vector base attention tensor transformation

* fix gemm

* clang format

* add gemm fp16 instances

* Temp save

* fpAintB kernel compile pass

* Sanity pass.

* Temp save

* debug code enabled

* Fp16AInt8B_GEMM sanity

* MQA implementation

* GQA-4 example

* tempsave

* Compile pass

* New implementation of fp16Aint8B Gemm, Acheieve similar math throughput with native fp16 Gemm

* format

* Todo: fix gemm_bilinear_wmma instances compilation bug

* Solve a bug when K1=16

* remove unnecessary changes

* Remove tensor layout limitation to LDS usage in tesnor contraction

* update self-attention and cross-attention

* fix a typo of name

* Add arch limiter for fp8 gemm

* enable fp8 gemm_xdl for all gfx9 targets

* temporarily disable gemm_xdl_fp16_fp8 on MI100/200

* fix the cmake logic for gemm_xdl_fp16_fp8

* re-enable the gemm_xdl_fp16_fp8 on MI100/200

---------

Co-authored-by: aska-0096 <haocwang@amd.com>
Co-authored-by: Sam Wu <sjwu@ualberta.ca>
Co-authored-by: Sam Wu <sam.wu2@amd.com>
Co-authored-by: rocking5566 <ChunYu.Lai@amd.com>
Co-authored-by: Rostyslav Geyyer <46627076+geyyer@users.noreply.github.com>
Co-authored-by: Rosty Geyyer <rosty.geyyer@amd.com>
Co-authored-by: carlushuang <carlus.huang@amd.com>
Co-authored-by: root <root@ctr-ubbsmc15.amd.com>
Co-authored-by: Jun Liu <Liu.Jun@amd.com>
Co-authored-by: Illia Silin <98187287+illsilin@users.noreply.github.com>
Co-authored-by: samjwu <samjwu@users.noreply.github.com>
Co-authored-by: haocwang <Haocong.WANG@amd.com>
Co-authored-by: illsilin <Illia.Silin@amd.com>
amathewc pushed a commit to amathewc/pytorch that referenced this issue Apr 17, 2025
Summary:
fix another combo kernel logging error:

  File "/home/guorachel/local/fbsource/buck-out/v2/gen/fbcode/4bcbfa3ef39dbd6f/caffe2/test/inductor/__combo_kernels__/combo_kernels#link-tree/torch/_inductor/scheduler.py", line 2036, in _init
    self.create_combo_kernel_nodes(num_ck_nodes=None)
  File "/home/guorachel/local/fbsource/buck-out/v2/gen/fbcode/4bcbfa3ef39dbd6f/caffe2/test/inductor/__combo_kernels__/combo_kernels#link-tree/torch/_inductor/scheduler.py", line 3068, in create_combo_kernel_nodes
    log.debug("ComboKernels: Generating with num_ck_nodes = %d...", num_ck_nodes)
Message: 'ComboKernels: Generating with num_ck_nodes = %d...'
Arguments: (None,)

Test Plan:
Verified in test_combo_kernel.py

the logging error went away.

Differential Revision: D71655949

Pull Request resolved: pytorch#149772
Approved by: https://github.com/ColinPeppler, https://github.com/Skylion007
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants
0