[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Hybrid small-signal modeling of GaN HEMTs based on improved genetic algorithm

Published: 01 September 2022 Publication History

Abstract

—In this paper, an improved genetic algorithm-based hybrid direct-optimal extraction method for small-signal model of GaN HEMT devices is proposed. Simulated annealing algorithm and fuzzy adaptive strategy are incorporated into genetic algorithm for model parameter optimization, to overcome the shortcoming of conventional genetic algorithm that tend to fall into local optimum solutions. The validity of proposed algorithm is verified by using a 20-element GaN HEMT small-signal equivalent circuit model under different operating conditions. The results show that the modeled S-parameters agree well with the measured S-parameters in the frequency range of 0.5–20.5 GHz.

References

[1]
H. Nam, J. Kim, J. Jeon, H. Jhon, J. Kim, High-performance RF power amplifier module using optimum chip-level packaging structure, IEEE Trans. Ind. Electron. 69 (6) (2022) 5660–5668,.
[2]
Y. Wang, Q. Wu, B. Yan, R. Xu, Y. Xu, A compact surface potential model for flexible radio frequency AlGaN/GaN high-electron-mobility transistor, IEEE Trans. Microw. Theor. Tech. 70 (1) (2022) 315–322,.
[3]
S. Khandelwal, Y.S. Chauhan, T.A. Fjeldly, S. Ghosh, A. Pampori, D. Mahajan, R. Dangi, S.A. Ahsan, ASM GaN: industry standard model for GaN RF and power devices—Part 1: DC, CV, and RF model, IEEE Trans. Electron. Dev. 66 (2018) 80–86,.
[4]
V. Nagarajan, K.M. Chen, H.Y. Lin, H.H. Hu, G.-W. Huang, C.J. Lin, B.Y. Chen, D. Anandan, S.K. Singh, C.H. Wu, E.Y. Chang, Low-frequency noise characterization of AlGaN/GaN HEMTs and MIS-HEMTs under UV illumination, IEEE Trans. Nanotechnol. 19 (2020) 405–409,.
[5]
Q. Chen, Y.Q. Chen, C. Liu, K. Geng, X. Yang, Degradation behavior and trap analysis based on low-frequency noise of AlGaN/GaN HEMTs subjected to radio frequency overdrive stress, IEEE Trans. Electron. Dev. 68 (1) (2020) 1–6.
[6]
H.G. Tamar, A. Nabavi, M. Haghighat, Analysis and design procedure of a mm-Wave Class-E power amplifier, Microelectron. J. 111 (2021),.
[7]
K.W. Kobayashi, V. Kumar, A broadband 70–110-GHz E-/W-band LNA using a 90-nm T-gate GaN HEMT technology, IEEE Microw. Wireless Compon. Lett. 31 (7) (2021) 885–888,.
[8]
A. Sunitha, B. Manickam, Co-design of on-chip loop antenna and differential class-E power amplifier at 2.4 GHz for biotelemetry applications, Microelectron. J. 86 (2019) 40–48,. APR.
[9]
A. Sv, B. My, Design of a high linear and ultra-wideband LNA using post distortion star feedback method, Microelectron. J. 107 (2020),.
[10]
Y. Niida, M. Sato, T. Ohki, N. Nakamura, A 0.6-2.1-GHz wideband GaN high-power amplifier using transmission-line-transformer-based differential-mode combiner with second-harmonic suppression, IEEE Trans. Microw. Theor. Tech. 99 (2021) 1,. 1.
[11]
H. Xie, Y.J. Cheng, Y.R. Ding, L. Wang, Y. Fan, A C-band high-efficiency power amplifier MMIC with second-harmonic control in 0.25 μm GaN HEMT technology, IEEE Microw. Wireless Compon. Lett. 31 (12) (2021) 1303–1306,.
[12]
H. Zhou, J.-R. Perez-Cisneros, S. Hesami, K. Buisman, C. Fager, A generic theory for design of efficient three-stage doherty power amplifiers, IEEE Trans. Microw. Theor. Tech. 70 (2) (2022) 1242–1253,.
[13]
G. Crupi, V. Vadalà, P. Colantonio, E. Cipriani, A. Caddemi, G. Vannini, D.M.M.-P. Schreurs, Empowering GaN HEMT models: the gateway for power amplifier design, Int. J. Numer. Model. Electron. Network. Dev. Field. 30 (1) (2017),.
[14]
A. Jarndal, R. Essaadali, A.B. Kouki, A reliable model parameter extraction method applied to AlGaN/GaN HEMTs, IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 35 (2) (2016) 211–219,.
[15]
Y. Chen, Y. Xu, Y. Luo, C. Wang, Z. Wen, B. Yan, R. Xu, A reliable and efficient small-signal parameter extraction method for GaN HEMTs, Int J Numer Model 33 (3) (2020),. May.
[16]
S. Wang, J. Zhang, S. Yang, N. Li, J. Wang, M. Liu, Behavioral-level modeling of GaN HEMT small-signal intrinsic noise based on DE-SVR algorithm, Microelectron. J. 123 (2022),.
[17]
R.G. Brady, C.H. Oxley, T. J, Brazil, “an improved small-signal parameter-extraction algorithm for GaN HEMT devices, IEEE Trans. Microw. Theor. Tech. 56 (7) (2008) 1535–1544,.
[18]
G. Crupi, D.M.M. Schreurs, A. Caddemi, A. Raffo, F. Vanaverbeke, G. Avolio, G. Vannini, W. De Raedt, High-frequency extraction of the extrinsic capacitances for GaN HEMT technology, IEEE Microw. Wireless Compon. Lett. 21 (8) (2011) 445–447,.
[19]
S. Aamir Ahsan, A.-H. Pampori, S. Ghosh, S. Khandelwal, Y.S. Chauhan, A new small-signal parameter extraction technique for large gate-periphery GaN HEMTs, IEEE Microw. Wireless Compon. Lett. 27 (10) (2017) 918–920,.
[20]
R. Menozzi, A. Piazzi, F. Contini, Small-signal modeling for microwave FET linear circuits based on a genetic algorithm, IEEE Trans. Circ. Sys. I: Fundamental Theory Appl. 43 (10) (1996) 839–847,.
[21]
A. Majumder, S. Chatterjee, S. Chatterjee, S.S. Chaudhari, D.R. Poddar, Optimization of small-signal model of GaN HEMT by using evolutionary algorithms, IEEE Microw. Wireless Compon. Lett. 27 (4) (2017) 362–364,.
[22]
A.H. Jarndal, A.S. Hussein, Hybrid small-signal model parameter extraction of GaN HEMTs on Si and SiC substrates based on global optimization, Int. J. RF Microw. Computer-Aided Eng. 29 (10) (2019),.
[23]
X. Du, M. Helaoui, J. Cai, J. Liu, F.M. Ghannouchi, Improved small-signal hybrid parameter-extraction technique for AlGaN/GaN high electron mobility transistors, Int. J. RF Microw. Computer-Aided Eng. 31 (4) (2021),.
[24]
Z. Marinković, G. Crupi, V. Vadala, A. Raffo, D. Schreurs, Temperature dependent small-signal neural modeling of high-periphery GaN HEMTs, in: 2019 14th International Conference on Advanced Technologies, Systems and Services in Telecommunications (℡SIKS), 2019, pp. 33–36. doi: 10.1109/℡SIKS46999.2019.9002335.
[25]
A.S. Hussein, A.H. Jarndal, Reliable hybrid small-signal modeling of GaN HEMTs based on particle-swarm-optimization, IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 37 (9) (2017) 1816–1824,.
[26]
B. Liu, J. Lu, Y. Wang, Y. Tang, An effective parameter extraction method based on memetic differential evolution algorithm, Microelectron. J. 39 (12) (2008) 1761–1769,.
[27]
M. Al Sabbagh, M.C. Yagoub, J. Park, New small-signal extraction method applied to GaN HEMTs on different substrates, Int. J. RF Microw. Computer-Aided Eng. 30 (9) (2020),.
[28]
D. Maafri, A.A. Saadi, M.A. Sabbagh, M.C.E. Yagoub, A new high-frequency HEMT GaN extrinsic capacitance extraction technique, IEEE Microw. Wireless Compon. Lett. (2021) 1–3,.
[29]
L. Jing, W. Yan, M. Long, Z. Yu, A new small-signal modeling and extraction method in AlGaN/GaN HEMTs, Solid State Electron. 52 (1) (2008) 115–120,.
[30]
V. Nagarajan, K.M. Chen, H.C. Wang, S.K. Signh, E.Y. Chang, A simple extraction method for parasitic series resistances in GaN HEMTs considering non-quasi-static effects, Microelectron. J. 87 (2019),.
[31]
J.H. Holland, Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT press, 1992.
[32]
L. Li, Y. Zhang, C. Yang, X. Jiao, L. Zhang, J. Song, Hybrid genetic algorithm-based optimization of powertrain and control parameters of plug-in hybrid electric bus, J. Franklin Inst. 352 (3) (2015) 776–801,.
[33]
M. Srinivas, L.M. Patnaik, Adaptive probabilities of crossover and mutation in genetic algorithms, IEEE Trans. Sys. Cybernetics 24 (4) (2002) 656–667,.
[34]
A. Jarndal, G. Kompa, A new small-signal modeling approach applied to GaN devices, IEEE Trans. Microw. Theor. Tech. 53 (11) (2005) 3440–3448,.
[35]
A. Abushawish, A. Jarndal, Hybrid particle swarm optimization-grey wolf optimization based small-signal modeling applied to GaN devices, Int. J. RF Microw. Computer-Aided Eng. 32 (5) (2022),.
[36]
G. Crupi, A. Raffo, A. Caddemi, G. Vannini, Kink effect in for GaN and GaAs HEMTs, IEEE Microw. Wireless Compon. Lett. 25 (5) (2015) 301–303,.

Cited By

View all
  • (2024)Optimal design of mixed dielectric coaxial-annular TSV using GWO algorithm based on artificial neural networkIntegration, the VLSI Journal10.1016/j.vlsi.2024.10220597:COnline publication date: 1-Jul-2024
  • (2024)Hybrid small-signal model parameter extraction for GaN HEMT-on-Si Substrates based on the SPF methodJournal of Computational Electronics10.1007/s10825-024-02168-323:3(516-524)Online publication date: 1-Jun-2024

Index Terms

  1. Hybrid small-signal modeling of GaN HEMTs based on improved genetic algorithm
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Microelectronics Journal
        Microelectronics Journal  Volume 127, Issue C
        Sep 2022
        115 pages

        Publisher

        Elsevier Science Publishers B. V.

        Netherlands

        Publication History

        Published: 01 September 2022

        Author Tags

        1. GaN HEMT
        2. Small-signal modeling
        3. Genetic algorithm
        4. Optimization

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 14 Dec 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Optimal design of mixed dielectric coaxial-annular TSV using GWO algorithm based on artificial neural networkIntegration, the VLSI Journal10.1016/j.vlsi.2024.10220597:COnline publication date: 1-Jul-2024
        • (2024)Hybrid small-signal model parameter extraction for GaN HEMT-on-Si Substrates based on the SPF methodJournal of Computational Electronics10.1007/s10825-024-02168-323:3(516-524)Online publication date: 1-Jun-2024

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media