Cited By
View all- Hennebold CIslam MKrauß JHuber M(2024)Combination of Process Mining and Causal Discovery Generated Graph Models for Comprehensive Process ModelingProcedia CIRP10.1016/j.procir.2024.10.242130(1296-1302)Online publication date: 2024
Survey | Data Type | Multivariate Time-series | Event Sequence | Covered Contents | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CB | SB | GC | SCM | DL | CB | SB | GC | Others | ED | ER | PA | ||
[78] | Non-temporal | \(\dot{+}\) | \(\dot{+}\) | \(-\) | \(\dot{+}\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(\checkmark\) | \(-\) |
[61] | Non-temporal | \(\dot{+}\) | \(\dot{+}\) | \(\checkmark\) | \(\dot{+}\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(\checkmark\) |
[71] | Non-temporal | \(\dot{+}\) | \(\dot{+}\) | \(-\) | \(\dot{+}\) | \(\dot{+}\) | \(-\) | \(-\) | \(-\) | \(-\) | \(\checkmark\) | \(-\) | \(-\) |
[187] | Non-temporal | \(\dot{+}\) | \(\dot{+}\) | \(\checkmark\) | \(\dot{+}\) | \(\dot{+}\) | \(-\) | \(-\) | \(-\) | \(-\) | \(\checkmark\) | \(-\) | \(-\) |
[207] | Non-temporal | \(\dot{+}\) | \(\dot{+}\) | \(-\) | \(\dot{+}\) | \(\dot{+}\) | \(-\) | \(-\) | \(-\) | \(-\) | \(\checkmark\) | \(-\) | \(\checkmark\) |
[103] | Non-temporal | \(\dot{+}\) | \(\dot{+}\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(\checkmark\) | \(-\) | \(-\) |
[172] | Non-temporal | \(\dot{+}\) | \(\dot{+}\) | \(-\) | \(-\) | \(\dot{+}\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) |
[134] | Temporal | \(\checkmark\) | \(-\) | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(-\) | \(-\) | \(-\) | \(-\) | \(\checkmark\) | \(-\) | \(-\) |
[166] | Temporal | \(-\) | \(-\) | \(\checkmark\) | \(-\) | \(\checkmark\) | \(-\) | \(-\) | \(\checkmark\) | \(-\) | \(-\) | \(-\) | \(-\) |
[138] | Temporal | \(\checkmark\) | \(\dot{+}\) | \(\checkmark\) | \(\dot{+}\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(\checkmark\) | \(-\) | \(-\) |
[7] | Temporal | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(-\) | \(-\) | \(-\) | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(\dot{+}\) |
[75] | Temporal | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(-\) | \(-\) | \(-\) | \(-\) | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) |
Ours | Temporal | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(\checkmark\) | \(-\) | \(\checkmark\) |
Section | Method | Target | Assumption | Configuration | Issues | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Graph | Contemporaneous | Sufficiency | Markov | Faithfulness | Value | Interval | Nonlinear | Hidden Conf | Intervention | Heterogeneity | Non-stationarity | Irregular Sampling | ||
CB | PCMCI (2019) [157] | Window | No | Yes | Yes | Yes | Both | Discrete | Yes | No | No | No | No | No |
PCMCI\(^+\) (2020) [155] | Window | Yes | Yes | Yes | Yes | Both | Discrete | Yes | No | No | No | No | No | |
Bagged-PCMCI\(^+\) (2023) [43] | Window | Yes | Yes | Yes | Yes | Both | Discrete | Yes | No | No | No | No | No | |
Regime-PCMCI (2020) [158] | Window | No | Yes | Yes | Yes | Both | Discrete | Yes | No | No | No | Yes | No | |
F-PCMCI (2023) [26] | Window | No | Yes | Yes | Yes | Both | Discrete | Yes | No | No | No | No | No | |
oCSE (2015) [177] | Summary | No | Yes | Yes | Yes | Continuous | Discrete | Yes | No | No | No | No | No | |
PCGCE (2022) [6] | Extended | Yes | Yes | Yes | Yes | Continuous | Discrete | Yes | No | No | No | No | No | |
PC-PMIME (2023) [5] | Summary | No | Yes | Yes | Yes | Continuous | Discrete | Yes | No | No | No | No | No | |
CTPC (2021) [20] | Summary | No | Yes | Yes | Yes | Discrete | Continuous | Yes | No | No | No | No | Yes | |
MB-CTPC (2023) [185] | Summary | No | Yes | Yes | Yes | Discrete | Continuous | Yes | No | No | No | No | Yes | |
ANLTSM (2008) [33] | Window | Yes | No | Yes | Yes | Continuous | Discrete | Yes | Yes | No | No | No | No | |
tsFCI (2010) [52] | Window | No | No | Yes | Yes | Both | Discrete | Yes | Yes | No | No | No | No | |
SVAR-FCI (2018) [125] | Window | Yes | No | Yes | Yes | Continuous | Discrete | No | Yes | No | No | No | No | |
TS-ICD (2023) [153] | Window | Yes | No | Yes | Yes | Both | Discrete | No | Yes | No | No | No | No | |
CDANs (2023) [54] | Window | Yes | No | Yes | Yes | Continuous | Discrete | Yes | Yes | No | No | Yes | No | |
LPCMCI (2020) [60] | Window | Yes | No | Yes | Yes | Both | Discrete | Yes | Yes | No | No | No | No | |
SB | DYNOTEARS (2020) [140] | Window | Yes | Yes | Yes | No | Both | Discrete | No | No | No | No | No | No |
NTS-NOTEARS (2021) [178] | Window | Yes | Yes | Yes | No | Both | Discrete | Yes | No | No | No | No | No | |
IDYNO (2022) [57] | Window | Yes | Yes | Yes | No | Continuous | Discrete | Yes | No | Yes | No | No | No | |
TECDI (2023) [110] | Window | Yes | Yes | Yes | No | Continuous | Discrete | Yes | No | Yes | No | No | No | |
SCM | VAR-LiNGAM (2008) [86] | Window | Yes | Yes | Yes | No | Continuous | Discrete | No | No | No | No | No | No |
NCDH (2022) [192] | Summary | No | Yes | Yes | No | Continuous | Discrete | Yes | No | No | No | Yes | No | |
TiMINo (2013) [144] | Summary | Yes | Yes | Yes | Yes | Continuous | Discrete | Yes | No | No | No | No | No | |
NBCB (2021) [8] | Summary | Yes | Yes | Yes | Yes | Continuous | Discrete | Yes | No | No | No | No | No | |
GC | (R)NN-GC (2015,2018) [133, 190] | Summary | Yes | No | No | No | Continuous | Discrete | Yes | No | No | No | No | No |
NGC (2022) [180] | Summary | No | No | No | No | Continuous | Discrete | Yes | No | No | No | No | No | |
eSRU (2020) [99] | Summary | No | No | No | No | Continuous | Discrete | Yes | No | No | No | No | No | |
SCGL (2019) [193] | Summary | No | No | No | No | Continuous | Discrete | Yes | No | No | No | No | No | |
GVAR (2021) [126] | Summary | No | No | No | No | Continuous | Discrete | Yes | No | No | No | No | No | |
TCDF (2019) [135] | Window | Yes | No | No | No | Continuous | Discrete | Yes | Yes | No | No | No | No | |
CR-VAE (2023) [109] | Summary | Yes | No | No | No | Continuous | Discrete | Yes | No | No | No | Yes | No | |
InGRA (2020) [34] | Summary | No | No | No | No | Continuous | Discrete | Yes | No | No | Yes | No | No | |
ACD (2022) [122] | Summary | No | No | No | No | Continuous | Discrete | Yes | Yes | No | Yes | No | No | |
HGGM (2019) [82] | Summary | No | No | No | No | Continuous | Discrete | Yes | No | No | Yes | No | No | |
Others | DBCL (2010) [186] | Summary | Yes | No | Yes | Yes | Continuous | Discrete | Yes | Yes | No | No | No | No |
NGM (2022) [13] | Summary | Yes | No | No | No | Continuous | Continuous | Yes | No | No | No | No | Yes | |
CCM (2012) [175] | Summary | No | No | No | No | Continuous | Discrete | Yes | No | No | No | No | No |
Model | Idea | Model Capacity | Complexity | Data Volume | Suitable when |
---|---|---|---|---|---|
MLE-SGLP [194] | Hawkes+MLE | Low | High | Low | \(-\) |
NPHC [2] | Hawkes+GMM | Low | Low | High | \(-\) |
\(L_0\)Hawkes [88] | Hawkes+\(L_0\) penalty | High | High | Low | \(-\) |
GC-nsHP [27] | Hawkes+ES separation | Low | Low | High | Non-stationary HP |
THP [25] | Hawkes+Topological graph | High | High | Low | Underlying topology |
MDLH [91] | Hawkes+MDL principle | High | \(-\) | High | Short event sequences |
MMLH [81] | Hawkes+MML principle | High | \(-\) | High | Short event sequences |
Granger-Busca [42] | Wold+MCMC | Low | Low | High | \(-\) |
Var-Wold [53] | Wold+Variational Inference | Low | Low | High | \(-\) |
CAUSE [212] | Encoder-decoder+Attribution | Medium | High | High | Inhibitive causality |
TNPAR [24] | Neural Poisson+Amortized infer. | High | High | High | Underlying topology |
Application | Data Type | Issue | SOTA | Example |
---|---|---|---|---|
AIOps | MTS: metrics, KPIs, and so on | Temporal Pattern | GC(NGC), CB(PCMCI) | [114], [129] |
Latent Interventions | CB(\(\psi\)-PC), SB | [89], [188] | ||
ES: alarms, logs, and so on | Topological Structure | SB, GC | [189], [215], [24] | |
Climatology | MTS: climate indices, and so on | Heterogeneity | GC | [80], [183] |
Non-stationarity | CB(Regime-PCMCI) | [97] | ||
Knowledge Incorporation | SB | [127] | ||
Scalability | CB(girded) | [77], [182], [19] | ||
Healthcare | MTS: vital signs, ECGs, fMRIs, and so on | Irregularly Sampling | SB(CTBN), GC(NGC) | [117], [30], [28] |
Non-stationarity | GC(NGC), CB | [92], [54] | ||
Temporal Pattern | GC(NGC) | [109] | ||
ES: EHRs, and so on | Scalability | GC | [191] |
Temporal data representing chronological observations of complex systems can be ubiquitously collected in smart industry, medicine, finance and etc. In the last decade, many tasks have been studied for mining temporal data and offered significant value ...
Discovering causal relationships among observed variables is an important research focus in data mining. Existing causal discovery approaches are mainly based on constraint-based methods and functional causal models (FCMs). However, the constraint-based ...
Causal relationships have been utilized in almost all disciplines, and the research into causal discovery has attracted a lot of attention in the last few years. Traditionally, causal relationships are identified by making use of interventions or ...
Association for Computing Machinery
New York, NY, United States
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in