[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1609/aaai.v37i7.26031guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Causal recurrent variational autoencoder for medical time series generation

Published: 07 February 2023 Publication History

Abstract

We propose causal recurrent variational autoencoder (CR-VAE), a novel generative model that is able to learn a Granger causal graph from a multivariate time series x and incorporates the underlying causal mechanism into its data generation process. Distinct to the classical recurrent VAEs, our CR-VAE uses a multi-head decoder, in which the p-th head is responsible for generating the p-th dimension of x (i.e., xp). By imposing a sparsity-inducing penalty on the weights (of the decoder) and encouraging specific sets of weights to be zero, our CR-VAE learns a sparse adjacency matrix that encodes causal relations between all pairs of variables. Thanks to this causal matrix, our decoder strictly obeys the underlying principles of Granger causality, thereby making the data generating process transparent. We develop a two-stage approach to train the overall objective. Empirically, we evaluate the behavior of our model in synthetic data and two real-world human brain datasets involving, respectively, the electroencephalography (EEG) signals and the functional magnetic resonance imaging (fMRI) data. Our model consistently outperforms state-of-the-art time series generative models both qualitatively and quantitatively. Moreover, it also discovers a faithful causal graph with similar or improved accuracy over existing Granger causality-based causal inference methods.

References

[1]
Amblard, P.-O.; and Michel, O. J. 2012. The relation between Granger causality and directed information theory: A review. Entropy, 15(1): 113-143.
[2]
Assaad, C. K.; Devijver, E.; and Gaussier, E. 2022. Survey and Evaluation of Causal Discovery Methods for Time Series. Journal of Artificial Intelligence Research, 73: 767-819.
[3]
Barnett, L.; Barrett, A. B.; and Seth, A. K. 2009. Granger causality and transfer entropy are equivalent for Gaussian variables. Physical review letters, 103(23): 238701.
[4]
Bengio, S.; Vinyals, O.; Jaitly, N.; and Shazeer, N. 2015. Scheduled sampling for sequence prediction with recurrent neural networks. Advances in neural information processing systems, 28.
[5]
Chambolle, A.; De Vore, R. A.; Lee, N.-Y.; and Lucier, B. J. 1998. Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Transactions on Image Processing, 7(3): 319-335.
[6]
Chen, J.; Feng, J.; and Lu, W. 2021. A Wiener causality defined by divergence. Neural Processing Letters, 53(3): 1773-1794.
[7]
Chen, Y.; Rangarajan, G.; Feng, J.; and Ding, M. 2004. Analyzing multiple nonlinear time series with extended Granger causality. Physics letters A, 324(1): 26-35.
[8]
Cho, K.; van Merriënboer, B.; Bahdanau, D.; and Bengio, Y. 2014. On the properties of neural machine translation: Encoder-decoder approaches. In 8th Workshop on Syntax, Semantics and Structure in Statistical Translation, SSST 2014, 103-111. Association for Computational Linguistics (ACL).
[9]
Chu, T.; Glymour, C.; and Ridgeway, G. 2008. Search for Additive Nonlinear Time Series Causal Models. Journal of Machine Learning Research, 9(5).
[10]
Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A. C.; and Bengio, Y. 2015. A Recurrent Latent Variable Model for Sequential Data. In Cortes, C.; Lawrence, N.; Lee, D.; Sugiyama, M.; and Garnett, R., eds., Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.
[11]
Daubechies, I.; Defrise, M.; and De Mol, C. 2004. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 57(11): 1413-1457.
[12]
De La Pava Panche, I.; Alvarez-Meza, A. M.; and Orozco-Gutierrez, A. 2019. A data-driven measure of effective connectivity based on Renyi's a-entropy. Frontiers in neuroscience, 13: 1277.
[13]
Desai, A.; Freeman, C.; Wang, Z.; and Beaver, I. 2021. TimeVAE: A Variational Auto-Encoder for Multivariate Time Series Generation. arXiv preprint arXiv:2111.08095.
[14]
Deshpande, G.; LaConte, S.; James, G. A.; Peltier, S.; and Hu, X. 2009. Multivariate Granger causality analysis of fMRI data. Human brain mapping, 30(4): 1361-1373.
[15]
Esteban, C.; Hyland, S. L.; and Ratsch, G. 2017. Real-valued (medical) time series generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633.
[16]
Fabius, O.; and Van Amersfoort, J. R. 2014. Variational recurrent auto-encoders. arXiv preprint arXiv:1412.6581.
[17]
Fraccaro, M.; Sønderby, S. K.; Paquet, U.; and Winther, O. 2016. Sequential neural models with stochastic layers. Advances in neural information processing systems, 29.
[18]
Giraldo, L. G. S.; Rao, M.; and Principe, J. C. 2014. Measures of entropy from data using infinitely divisible kernels. IEEE Transactions on Information Theory, 61(1): 535-548.
[19]
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Generative adversarial nets. Advances in neural information processing systems, 27.
[20]
Goudet, O.; Kalainathan, D.; Caillou, P.; Guyon, I.; Lopez-Paz, D.; and Sebag, M. 2018. Learning functional causal models with generative neural networks. In Explainable and interpretable models in computer vision and machine learning, 39-80. Springer.
[21]
Goyal, A.; Sordoni, A.; Côté, M.-A.; Ke, N. R.; and Bengio, Y. 2017. Z-forcing: Training stochastic recurrent networks. Advances in neural information processing systems, 30.
[22]
Granger, C. W. J. 1969. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37(3): 424.
[23]
Gretton, A.; Borgwardt, K.; Rasch, M.; Schölkopf, B.; and Smola, A. 2006. A kernel method for the two-sample-problem. Advances in neural information processing systems, 19.
[24]
Hoyer, P.; Janzing, D.; Mooij, J. M.; Peters, J.; and Scholkopf, B. 2008. Nonlinear causal discovery with additive noise models. Advances in neural information processing systems, 21.
[25]
Huijse, P.; Estevez, P. A.; Protopapas, P.; Zegers, P.; and Principe, J. C. 2012. An information theoretic algorithm for finding periodicities in stellar light curves. IEEE Transactions on Signal Processing, 60(10): 5135-5145.
[26]
Isaksson, A.; Wennberg, A.; and Zetterberg, L. H. 1981. Computer analysis of EEG signals with parametric models. Proceedings of the IEEE, 69(4): 451-461.
[27]
Kingma, D. P.; and Welling, M. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
[28]
Kramer, G. 1998. Causal conditioning, directed information and the multiple-access channel with feedback. In Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No. 98CH36252), 189. IEEE.
[29]
Kramer, M. A.; Kolaczyk, E. D.; and Kirsch, H. E. 2008. Emergent network topology at seizure onset in humans. Epilepsy research, 79(2-3): 173-186.
[30]
Kugiumtzis, D. 2013. Direct-coupling information measure from nonuniform embedding. Physical Review E, 87(6): 062918.
[31]
Liang, T.; Glossner, J.; Wang, L.; Shi, S.; and Zhang, X. 2021. Pruning and quantization for deep neural network acceleration: A survey. Neurocomputing, 461: 370-403.
[32]
Litterman, R. B. 1986. Forecasting with Bayesian vector autoregressions—five years of experience. Journal of Business & Economic Statistics, 4(1): 25-38.
[33]
Liu, J.; Ji, J.; Xun, G.; Yao, L.; Huai, M.; and Zhang, A. 2020. EC-GAN: inferring brain effective connectivity via generative adversarial networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, 4852-4859.
[34]
Liu, W.; Pokharel, P. P.; and Principe, J. C. 2008. The kernel least-mean-square algorithm. IEEE Transactions on Signal Processing, 56(2): 543-554.
[35]
Lorenz, E. N. 1996. Predictability: A problem partly solved. In Proc. Seminar on predictability, volume 1.
[36]
Marcinkevičs, R.; and Vogt, J. E. 2021. Interpretable models for granger causality using self-explaining neural networks. arXiv preprint arXiv:2101.07600.
[37]
Marinazzo, D.; Pellicoro, M.; and Stramaglia, S. 2008. Kernel method for nonlinear Granger causality. Physical review letters, 100(14): 144103.
[38]
Massey, J. 1990. Causality, feedback and directed information. In Proc. Int. Symp. Inf. Theory Applic.(ISITA-90), 303-305.
[39]
Mogren, O. 2016. C-RNN-GAN: Continuous recurrent neural networks with adversarial training. Advances in Neural Information Processing Systems (NeurIPS).
[40]
Nauta, M.; Bucur, D.; and Seifert, C. 2019. Causal discovery with attention-based convolutional neural networks. Machine Learning and Knowledge Extraction, 1(1): 19.
[41]
Rangapuram, S. S.; Seeger, M. W.; Gasthaus, J.; Stella, L.; Wang, Y.; and Januschowski, T. 2018. Deep state space models for time series forecasting. Advances in neural information processing systems, 31.
[42]
Runge, J.; Nowack, P.; Kretschmer, M.; Flaxman, S.; and Sejdinovic, D. 2019. Detecting and quantifying causal associations in large nonlinear time series datasets. Science advances, 5(11): eaau4996.
[43]
Schreiber, T. 2000. Measuring information transfer. Physical review letters, 85(2): 461.
[44]
Smith, S. M.; Miller, K. L.; Salimi-Khorshidi, G.; Webster, M.; Beckmann, C. F.; Nichols, T. E.; Ramsey, J. D.; and Woolrich, M. W. 2011. Network modelling methods for FMRI. Neuroimage, 54(2): 875-891.
[45]
Stramaglia, S.; Cortes, J. M.; and Marinazzo, D. 2014. Synergy and redundancy in the Granger causal analysis of dynamical networks. New Journal of Physics, 16(10): 105003.
[46]
Takahashi, S.; Chen, Y.; and Tanaka-Ishii, K. 2019. Modeling financial time-series with generative adversarial networks. Physica A: Statistical Mechanics and its Applications, 527: 121261.
[47]
Tank, A.; Covert, I.; Foti, N.; Shojaie, A.; and Fox, E. B. 2021. Neural granger causality. IEEE Transactions on Pattern Analysis and Machine Intelligence. Van der Maaten, L.; and Hinton, G. 2008. Visualizing data using t-SNE. Journal of machine learning research, 9(11).
[48]
Wang, X.; Wang, R.; Li, F.; Lin, Q.; Zhao, X.; and Hu, Z. 2020. Large-scale granger causal brain network based on resting-state fMRI data. Neuroscience, 425: 169-180.
[49]
West, M.; and Harrison, J. 2006. Bayesian forecasting and dynamic models. Springer Science & Business Media.
[50]
Wiener, N. 1956. The Theory of Prediction. Modern Mathematics for Engineers, 58: 323-329.
[51]
Williams, R. J.; and Zipser, D. 1989. A learning algorithm for continually running fully recurrent neural networks. Neural computation, 1(2): 270-280.
[52]
Yoon, J.; Jarrett, D.; and Van der Schaar, M. 2019. Time-series generative adversarial networks. Advances in neural information processing systems, 32.

Cited By

View all
  • (2024)Learning Flexible Time-windowed Granger Causality Integrating Heterogeneous Interventional Time Series DataProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3672023(4408-4418)Online publication date: 25-Aug-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
AAAI'23/IAAI'23/EAAI'23: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence
February 2023
16496 pages
ISBN:978-1-57735-880-0

Sponsors

  • Association for the Advancement of Artificial Intelligence

Publisher

AAAI Press

Publication History

Published: 07 February 2023

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Learning Flexible Time-windowed Granger Causality Integrating Heterogeneous Interventional Time Series DataProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3672023(4408-4418)Online publication date: 25-Aug-2024

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media