[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1837101.1837109acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Spectral mesh processing

Published: 26 July 2010 Publication History

Abstract

Spectral mesh processing is an idea that was proposed at the beginning of the 90's, to port the "signal processing toolbox" to the setting of 3D mesh models. Recent advances in both computer horsepower and numerical software make it possible to fully implement this vision. In the more classical context of sound and image processing, Fourier analysis was a corner stone in the development of a wide spectrum of techniques, such as filtering, compression, and recognition. In this course, attendees will learn how to transfer the underlying concepts to the setting of a mesh model, how to implement the "spectral mesh processing" toolbox and use it for real applications, including filtering, shape matching, remeshing, segmentation, and parameterization.

Supplementary Material

CS014_2.mov (cs014_2-10.mov)
Part 2 of the Spectral mesh processing video presentation
MP4 File (cs014_1-10.mp4)

References

[1]
{AFW06} D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 2006.
[2]
{Arv95} James Arvo. The Role of Functional Analysis in Global Illumination. In P. M. Hanrahan and W. Purgathofer, editors, Rendering Techniques '95 (Proceedings of the Sixth Eurographics Workshop on Rendering), pages 115--126, New York, NY, 1995. Springer-Verlag.
[3]
{BN03} M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. Neural Computations, 15(6):1373--1396, 2003.
[4]
{Bra99} Ronald N. Bracewell. The Fourier Transform And Its Applications. McGraw-Hill, 1999.
[5]
{Cip93} Barri Cipra. You can't always hear the shape of a drum. What's Happening in the Mathematical Sciences, 1, 1993.
[6]
{DBG+05} S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C. Hart. Quadrangulating a mesh using laplacian eigenvectors. Technical report, June 2005.
[7]
{DBG+06a} S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C. Hart. Spectral mesh quadrangulation. ACM Transactions on Graphics (SIGGRAPH 2006 special issue), 2006.
[8]
{DBG+06b} Shen Dong, Peer-Timo Bremer, Michael Garland, Valerio Pascucci, and John C. Hart. Spectral surface quadrangulation. In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers, pages 1057--1066, New York, NY, USA, 2006. ACM Press.
[9]
{dGGV08} Fernando de Goes, Siome Goldenstein, and Luiz Velho. A hierarchical segmentation of articulated bodies. Computer Graphics Forum (Symposium on Geometry Processing), 27(5):1349--1356, 2008.
[10]
{DKT05} Mathieu Desbrun, Eva Kanzo, and Yiying Tong. Discrete differential forms for computational modeling. Siggraph '05 course notes on Discrete Differential Geometry, Chapter 7, 2005.
[11]
{DMA02} Mathieu Desbrun, Mark Meyer, and Pierre Alliez. Intrinsic parameterizations of surface meshes. In Proceedings of Eurographics, pages 209--218, 2002.
[12]
{dV90} Y. Colin de Verdiere. Sur un nouvel invariant des graphes et un critere de planarite. J. of Combinatorial Theory, 50, 1990.
[13]
{Dye06} Ramsey Dyer. Mass weights and the cot operator (personal communication). Technical report, Simon Fraser University, CA, 2006.
[14]
{EK03} A. Elad and R. Kimmel. On bending invariant signatures for surfaces. IEEE Trans. Pattern Anal. Mach. Intell., 25(10):1285--1295, 2003.
[15]
{Fei96} J. Feidman. Computing betti numbers via combinatorial laplacians. In Proc. 28th Sympos. Theory Comput., pages 386--391. ACM, 1996.
[16]
{FH04} M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. Springer, 2004.
[17]
{Fie73} Miroslav Fiedler. Algebraic connectivity of graphs. Czech. Math. Journal, 23:298--305, 1973.
[18]
{Fie75} Miroslav Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. Journal, 25:619--633, 1975.
[19]
{GBAL} Katarzyna Gebal, Andreas Baerentzen, Henrik Aanaes, and Rasmus Larsen. Shape analysis using the auto diffusion function. Computer Graphics Forum (Proc. of Symp. on Geom. Proc.).
[20]
{GGS03a} C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical parameterization for 3d meshes. ACM Trans. Graph., 22(3):358--363, 2003.
[21]
{GGS03b} C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical parameterization for 3d meshes, 2003.
[22]
{Got03} Craig Gotsman. On graph partitioning, spectral analysis, and digital mesh processing. In Shape Modeling International, pages 165--174, 2003.
[23]
{GY02} X. Gu and S.-T. Yau. Computing conformal structures of surfaces. Communications in Information and Systems, 2(2):121--146, 2002.
[24]
{Hir03} Anil Hirani. Discrete exterior calculus. PhD thesis, 2003.
[25]
{HPW06} Klaus Hildebrandt, Konrad Polthier, and Max Wardetzky. On the convergence of metric and geometric properties of polyhedral surfaces. Geom Dedicata, 2006.
[26]
{HS97} D. D. Hoffman and M. Singh. Salience of visual parts. Cognition, 63:29--78, 1997.
[27]
{HWAG09} Qixing Huang, Martin Wicke, Bart Adams, and Leonidas J. Guibas. Shape decomposition using modal analysis. 28(2):to appear, 2009.
[28]
{HZM+08} Jin Huang, Muyang Zhang, Jin Ma, Xinguo Liu, Leif Kobbelt, and Hujun Bao. Spectral quadrangulation with orientation and alignment control. ACM Transactions on Graphics (SIGGRAPH Asia conf. proc., 2008.
[29]
{IL05} Martin Isenburg and Peter Lindstrom. Streaming meshes. In IEEE Visualization, page 30, 2005.
[30]
{Jai89} A. K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, 1989.
[31]
{JNT} Dmitry Jakobson, Nikolai Nadirashvili, and John Toth. Geometric properties of eigenfunctions.
[32]
{JZ07} Varun Jain and Hao Zhang. A spectral approach to shape-based retrieval of articulated 3D models. Computer Aided Design, 39:398--407, 2007.
[33]
{JZvK07} Varun Jain, Hao Zhang, and Oliver van Kaick. Non-rigid spectral correspondence of triangle meshes. International Journal on Shape Modeling, 2007. to appear.
[34]
{Kac66} Mark Kac. Can you hear the shape of a drum? Amer. Math. Monthly, 73, 1966.
[35]
{KG00a} Z. Karni and C. Gotsman. Spectral compression of mesh geometry. In Proc. of ACM SIGGRAPH, pages 279--286, 2000.
[36]
{KG00b} Zachi Karni and Craig Gotsman. Spectral compression of mesh geometry. In SIGGRAPH, pages 279--286, 2000.
[37]
{KG00c} Zachi Karni and Craig Gotsman. Spectral compression of mesh geometry. In SIGGRAPH '00: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pages 279--286, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.
[38]
{KLS03} A. Khodakovsky, N. Litke, and P. Schröder. Globally smooth parameterizations with low distortion. ACM TOG (SIGGRAPH), 2003.
[39]
{Kor02} Y. Koren. On spectral graph drawing, 2002.
[40]
{Kor03} Y. Koren. On spectral graph drawing. In Proc. of the International Computing and Combinatorics Conference, pages 496--508, 2003.
[41]
{KSO04} Ravikrishna Kolluri, Jonathan Richard Shewchuk, and James F. O'Brien. Spectral surface reconstruction from noisy point clouds. In Proc. of Eurographics Symposium on Geometry Processing, pages 11--21, 2004.
[42]
{KVV00} R. Kannan, S. Vempala, and A. Vetta. On clustering - good, bad, and spectral. In FOCS, pages 367--377, 2000.
[43]
{Lev06} Bruno Levy. Laplace-beltrami eigenfunctions: Towards an algorithm that understands geometry. In IEEE International Conference on Shape Modeling and Applications, 2006.
[44]
{LH05} Marius Leordeanu and Martial Hebert. A spectral technique for correspondence problems using pairwise constraints. In International Conference of Computer Vision (ICCV), volume 2, pages 1482--1489, October 2005.
[45]
{LPM02} Bruno Levy, Sylvain Petitjean, and Nicolas Ray Nicolas Jerome Maillot. Least squares conformal maps for automatic texture atlas generation. In ACM, editor, SIGGRAPH conf. proc., 2002.
[46]
{LPRM02} B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for automatic texture atlas generation. In Proc. of ACM SIGGRAPH 02, pages 362--371, 2002.
[47]
{LZ04} R. Liu and H. Zhang. Segmentation of 3D meshes through spectral clustering. In Pacific Graphics, pages 298--305, 2004.
[48]
{LZ07} Rong Liu and Hao Zhang. Mesh segmentation via spectral embedding and contour analysis. Computer Graphics Forum (Special Issue of Eurographics 2007), 26:385--394, 2007.
[49]
{MCBH07} Diana Mateus, Fabio Cuzzolin, Edmond Boyer, and Radu Horaud. Articulated shape matching by robust alignment of embedded representations. In ICCV '07 Workshop on 3D Representation for Recognition (3dRR-07), 2007.
[50]
{MDSB03} Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. Discrete differential-geometry operators for triangulated 2-manifolds. In Hans-Christian Hege and Konrad Polthier, editors, Visualization and Mathematics III, pages 35--57. Springer-Verlag, Heidelberg, 2003.
[51]
{MIT06} Omer Meshar, Dror Irony, and Sivan Toledo. An out-of-core sparse symmetric indefinite factorization method. ACM Transactions on Mathematical Software, 32:445--471, 2006.
[52]
{MTAD08} Patrick Mullen, Yiying Tong, Pierre Alliez, and Mathieu Desbrun. Spectral conformal parameterization. In ACM/EG Symposium of Geometry Processing, 2008.
[53]
{NJW02} A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: analysis and an algorithm. In Neural Information Processing Systems, volume 14, pages 849--856, 2002.
[54]
{OMT02} R. Ohbuchi, A. Mukaiyama, and S. Takahashi. A frequency-domain approach to watermarking 3D shapes. Computer Graphics Forum, 21(3):373--382, 2002.
[55]
{OSG08} Maks Ovsjanikov, Jian Sun, and Leonidas Guibas. Global intrinsic symmetries of shapes. Computer Graphics Forum (Symposium on Geometry Processing), 27(5):1341--1348, 2008.
[56]
{OTMM01} R. Ohbuchi, S. Takahashi, T. Miyazawa, and A. Mukaiyama. Watermarking 3D polygonal meshes in the mesh spectral domain. In Proc. of Graphics Interface, pages 9--18, 2001.
[57]
{PP93} Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(1), 1993.
[58]
{Pra99} G. Prathap. Towards a science of fea: Patterns, predictability and proof through some case studies. Current Science, 77:1311--1318, 1999.
[59]
{RS00a} S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323--2326, 2000.
[60]
{RS00b} Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323--2326, Dec 2000.
[61]
{Rus07} R. M. Rustamov. Laplace-beltrami eigenfunctions for deformation invariant shape representation. In Proc. of Eurographics Symposium on Geometry Processing, pages 225--233, 2007.
[62]
{RWP05a} M. Reuter, F.-E. Wolter, and N. Peinecke. Laplace-beltrami spectra as "shape-dna" of surfaces and solids. CAD Journal, 2005.
[63]
{RWP05b} Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. Laplacespectra as fingerprints for shape matching. In SPM '05: Proceedings of the 2005 ACM symposium on Solid and physical modeling, pages 101--106, New York, NY, USA, 2005. ACM Press.
[64]
{SB92} L. S. Shapiro and J. M. Brady. Feature-based correspondence: an eigenvector approach. Image and Vision Computing, 10(5):283--288, 1992.
[65]
{SGD05} P. Schröder, E. Grinspun, and M. Desbrun. Discrete differential geometry: an applied introduction. In SIGGRAPH Course Notes, 2005.
[66]
{SM00} Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(8):888--905, 2000.
[67]
{SOG} Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum (Proc. of Symp. on Geom. Proc.).
[68]
{Tau95a} G. Taubin. A signal processing approach to fair surface design. In Proc. of ACM SIGGRAPH, pages 351--358, 1995.
[69]
{Tau95b} Gabriel Taubin. A signal processing approach to fair surface design. In SIGGRAPH '95: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pages 351--358, New York, NY, USA, 1995. ACM Press.
[70]
{TB97} Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997.
[71]
{TdSL00} J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319--2323, 2000.
[72]
{THCM04} M. Tarini, K. Hormann, P. Cignoni, and C. Montani. Polycubemaps. ACM TOG (SIGGRAPH), 2004.
[73]
{vL06} Ulrike von Luxburg. A tutorial on spectral clustering. Technical Report TR-149, Max Plank Institute for Biological Cybernetics, August 2006.
[74]
{VM03} D. Verma and M. Meila. A comparison of spectral clustering algorithms. Technical Report UW-CSE-03-05-01, University of Washington, 2003.
[75]
{VS01} D. V. Vranić and D. Saupe. 3D shape descriptor based on 3D Fourier transform. In Proc. EURASIP Conf. on Digital Signal Processing for Multimedia Communications and Services, 2001.
[76]
{WBH+07} Max Wardetzky, Miklos Bergou, David Harmon, Denis Zorin, and Eitan Grinspun. Discrete quadratic curvature energies. Computer Aided Geometric Design (CAGD), 2007.
[77]
{Wei99} Y. Weiss. Segmentation using eigenvectors: A unifying view. In Proc. of the International Conference on Computer Vision, pages 975--983, 1999.
[78]
{WK05} Jianhua Wu and Leif Kobbelt. Efficient spectral watermarking of large meshes with orthogonal basis functions. In The Visual Computer, 2005.
[79]
{WMKG07} Max Wardetzky, Saurabh Mathur, Felix Kalberer, and Eitan Grinspun. Discrete laplace operators: No free lunch. Eurographics Symposium on Geometry Processing, 2007.
[80]
{You85} F. W. Young. Multidimensional scaling. Encyclopedia of Statistical Sciences, 5:649--658, 1985.
[81]
{ZKK02} Gil Zigelman, Ron Kimmel, and Nahum Kiryati. Texture mapping using surface flattening via multidimensional scaling. IEEE Transactions on Visualization and Computer Graphics, 8(2), 2002.
[82]
{ZL05} H. Zhang and R. Liu. Mesh segmentation via recursive and visually salient spectral cuts. In Proc. of Vision, Modeling, and Visualization, 2005.
[83]
{ZSGS04} Kun Zhou, John Snyder, Baining Guo, and Heung-Yeung Shum. Iso-charts: Stretch-driven mesh parameterization using spectral analysis. In Symposium on Geometry Processing, pages 47--56, 2004.
[84]
{ZvKDar} Hao Zhang, Oliver van Kaick, and Ramsay Dyer. Spectral mesh processing. Computer Graphics Forum, 2009, to appear. http://www.cs.sfu.ca/~haoz/pubs/zhang_cgf09_spect_survey.pdf.
[85]
G. Taubin. A signal processing approach to fair surface design. In Proc. of ACM SIGGRAPH, pages 351--358, 1995.
[86]
Z. Karni and C. Gotsman. Spectral compression of mesh geometry. In Proc. of ACM SIGGRAPH, pages 279--286, 2000.
[87]
A. K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, 1989.
[88]
F. R. K. Chung. Spectral Graph Theory. AMS, 1997.
[89]
Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(8):888--905, 2000.
[90]
Ulrike von Luxburg. A tutorial on spectral clustering. Technical Report TR-149, Max Plank Institute for Biological Cybernetics, August 2006.
[91]
Varun Jain, Hao Zhang, and Oliver van Kaick. Non-rigid spectral correspondence of triangle meshes. International Journal on Shape Modeling, 13(1):101--124, 2007.
[92]
H. Qiu and ER Hancock, Clustering and embedding using commute times, IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (2007), no. 11, 1873--1890.
[93]
Hao Zhang, Oliver van Kaick, and Ramsay Dyer. Spectral mesh processing. Computer Graphics Forum, 2009, to appear. http://www.cs.sfu.ca/~haoz/pubs/zhang_cgf09_spect_survey.pdf.
[94]
Rong Liu and Hao Zhang. Mesh segmentation via spectral embedding and contour analysis. Computer Graphics Forum (Special Issue of Eurographics 2007), 26:385--394, 2007.
[95]
{EY36} Eckart C., Young G.: The approximation of one matrix by another of lower rank. Psychometrika 1 (1936), 211--218.
[96]
{BH03} Brand M., Huang K.: A unifying theorem for spectral embedding and clustering. In Proc. of Int. Conf. on AI and Stat. (Key West, Florida, 2003).
[97]
Max Wardetzky, Saurabh Mathur, Felix Kalberer, and Eitan Grinspun. Discrete laplace operators: No free lunch. Eurographics Symposium on Geometry Processing, 2007.
[98]
{VL08} Vallet B., Lévy B.: Spectral geometry processing with manifold harmonics. Computer Graphics Forum (Special Issue of Eurographics) 27, 2 (2008), 251--260.
[99]
Dyer, R., Zhang, H., and Möller, T. 2007. Delaunay mesh construction. In Symp. Geometry Processing, 271--282.
[100]
{LZ06} Li J., Zhang H.: Nonobtuse remeshing and decimation. In SGP (2006), pp. 235--238.
[101]
R. Liu, H. Zhang, A. Shamir, and D. Cohen-Or, "A Part-Aware Surface Metric for Shape Processing", Eurographics 2009
[102]
A. Shamir, "A Survey on Mesh Segmentation Techniques", Computer Graphics Forum (Eurographics STAR 2006), 2008.
[103]
F. de Goes, Siome Goldenstein, and Luiz Velho, "A hierarchical Segmentation of Articulated Bodies", SGP 2008.
[104]
R. Liu and H. Zhang, "Spectral Clustering for Mesh Segmentation", Pacific Graphics 2004.
[105]
R. Liu and H. Zhang, "Mesh Segmentation via Spectral Embedding and Contour Analysis", Eurographics 2007.
[106]
S. Katz and A. Tal, "Hierarchical Mesh Segmentation via Fuzzy Clustering and Cuts", SIGGRAPH 2003.
[107]
R. Rustomov, "Laplacian-Beltrami Eigenfunctions for Deformation Invariant Shape Representation", SGP 2007.
[108]
V. Jain, H. Zhang, O. van Kaick, "Non-Rigid Spectral Correspondence of Triangle Meshes, IJSM 2007.
[109]
M. Ovsjanikov, J. Sun, and L. Guibas, "Global Intrinsic Symmetries of Shapes", SGP 2008.
[110]
V. Jain and H. Zhang, "A Spectral Approach to Shape-Based Retrieval of Articulated 3D Models", CAD 2007.
[111]
K. Xu, H. Zhang, A. Tagliasacchi, L. Liu, M. Meng, L. Guo, Y. Xiong, "Partial Intrinsic Reflectional Symmetry of 3D Shapes", SIGGRAPH Asia 2009.

Cited By

View all
  • (2024)Deformation Recovery: Localized Learning for Detail-Preserving DeformationsACM Transactions on Graphics10.1145/368796843:6(1-16)Online publication date: 19-Dec-2024
  • (2024)A Heat Method for Generalized Signed DistanceACM Transactions on Graphics10.1145/365822043:4(1-19)Online publication date: 19-Jul-2024
  • (2024)Laplacian2Mesh: Laplacian-Based Mesh UnderstandingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.325904430:7(4349-4361)Online publication date: Jul-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH '10: ACM SIGGRAPH 2010 Courses
July 2010
1132 pages
ISBN:9781450303958
DOI:10.1145/1837101
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 July 2010

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Conference

SIGGRAPH '10
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)103
  • Downloads (Last 6 weeks)12
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Deformation Recovery: Localized Learning for Detail-Preserving DeformationsACM Transactions on Graphics10.1145/368796843:6(1-16)Online publication date: 19-Dec-2024
  • (2024)A Heat Method for Generalized Signed DistanceACM Transactions on Graphics10.1145/365822043:4(1-19)Online publication date: 19-Jul-2024
  • (2024)Laplacian2Mesh: Laplacian-Based Mesh UnderstandingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.325904430:7(4349-4361)Online publication date: Jul-2024
  • (2024)From coin to 3D face sculpture portraits in the round of Roman emperorsComputers and Graphics10.1016/j.cag.2024.103999123:COnline publication date: 1-Oct-2024
  • (2024)Voxel graph operatorsAdvances in Engineering Software10.1016/j.advengsoft.2024.103722196:COnline publication date: 1-Oct-2024
  • (2024)ReMatching: Low-Resolution Representations for Scalable Shape CorrespondenceComputer Vision – ECCV 202410.1007/978-3-031-72913-3_11(183-200)Online publication date: 2-Dec-2024
  • (2024)Digital Calculus Frameworks and Comparative Evaluation of Their Laplace-Beltrami OperatorsDiscrete Geometry and Mathematical Morphology10.1007/978-3-031-57793-2_8(93-106)Online publication date: 2024
  • (2023)Attention And Positional Encoding Are (Almost) All You Need For Shape MatchingComputer Graphics Forum10.1111/cgf.1491242:5Online publication date: 10-Aug-2023
  • (2023)TubULAR: tracking in toto deformations of dynamic tissues via constrained mapsNature Methods10.1038/s41592-023-02081-w20:12(1980-1988)Online publication date: 6-Dec-2023
  • (2022)A Survey of Deep Learning-Based Mesh ProcessingCommunications in Mathematics and Statistics10.1007/s40304-021-00246-710:1(163-194)Online publication date: 14-Feb-2022
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media