[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/1735603.1735623guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Shape analysis using the auto diffusion function

Published: 15 July 2009 Publication History

Abstract

Scalar functions defined on manifold triangle meshes is a starting point for many geometry processing algorithms such as mesh parametrization, skeletonization, and segmentation. In this paper, we propose the Auto Diffusion Function (ADF) which is a linear combination of the eigenfunctions of the Laplace-Beltrami operator in a way that has a simple physical interpretation. The ADF of a given 3D object has a number of further desirable properties: Its extrema are generally at the tips of features of a given object, its gradients and level sets follow or encircle features, respectively, it is controlled by a single parameter which can be interpreted as feature scale, and, finally, the ADF is invariant to rigid and isometric deformations.
We describe the ADF and its properties in detail and compare it to other choices of scalar functions on manifolds. As an example of an application, we present a pose invariant, hierarchical skeletonization and segmentation algorithm which makes direct use of the ADF.

References

[1]
{ABS03} Attene M., Biasotti S., Spagnuolo M.: Shape understanding by contour-driven retiling. The Visual Computer 19, 2--3 (2003), 127--138.
[2]
{AHLD07} Aujay G., Hétroy F., Lazarus F., Depraz C.: Harmonic skeleton for realistic character animation. In Symposium on Computer Animation, SCA 07, August, 2007 (San Diego, California, Etats-Unis, 2007), Metaxas D., Popović J., (Eds.), ACM-Siggraph/Eurographics, pp. 151--160.
[3]
{Ale03} Alexa M.: Differential coordinates for local mesh morphing and deformation. The Visual Computer 19, 2--3 (2003), 105--114.
[4]
{ATC*08} Au O. K.-C., Tai C.-L., Chu H.-K., Cohen-Or D., Lee T.-Y.: Skeleton extraction by mesh contraction. In SIGGRAPH '08: ACM SIGGRAPH 2008 papers (New York, NY, USA, 2008), ACM, pp. 1--10.
[5]
{Ber03} Berger M.: A panoramic view of Riemannian geometry. Springer, 2003.
[6]
{BFS00} Biasotti S., Falcidieno B., Spagnuolo M.: Extended reeb graphs for surface understanding and description. In DGCI '00: Proceedings of the 9th International Conference on Discrete Geometry for Computer Imagery (London, UK, 2000), Springer-Verlag, pp. 185--197.
[7]
{BN02} Belkin M., Niyogi P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural Information Processing Systems 14 (2002), MIT Press, pp. 585--591.
[8]
{CMEH*03} Cole-McLaughlin K., Edelsbrunner H., Harer J., Natarajan V., Pascucci V.: Loops in reeb graphs of 2-manifolds. In SCG '03: Proceedings of the nineteenth annual symposium on Computational geometry (New York, NY, USA, 2003), ACM, pp. 344--350.
[9]
{CRD84} Chavel I., Randol B., Dodziuk J.: Eigenvalues in Riemannian geometry. Acad. Press, 1984.
[10]
{DBG*06} Dong S., Bremer P.-T., Garland M., Pascucci V., Hart J. C.: Spectral surface quadrangulation. ACM Trans. Graph. 25, 3 (2006), 1057--1066.
[11]
{dGGV08} de Goes F., Goldenstein S., Velho L.: A hierarchical segmentation of articulated bodies. Comput. Graph. Forum 27, 5 (2008), 1349--1356.
[12]
{DHLM05} Desbrun M., Hirani A. N., Leok M., Marsden J. E.: Discrete exterior calculus. http://arxiv.org/abs/math?papernum=0508341, Aug 2005.
[13]
{DKG05} Dong S., Kircher S., Garland M.: Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Comput. Aided Geom. Des. 22, 5 (2005), 392--423.
[14]
{HWAG09} Huang Q., Wicke M., Adams B., Guibas L.: Shape decomposition using modal analysis. Computer Graphics Forum 28, 2 (2009). to appear.
[15]
{JWYG04} Jin M., Wang Y., Yau S.-T., Gu X.: Optimal global conformal surface parameterization. In VIS '04: Proceedings of the conference on Visualization '04 (Washington, DC, USA, 2004), IEEE Computer Society, pp. 267--274.
[16]
{KLT05} Katz S., Leifman G., Tal A.: Mesh segmentation using feature point and core extraction. The Visual Computer 21, 8--10 (2005), 649--658.
[17]
{KT03} Katz S., Tal A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics 22, 3 (July 2003), 954--961.
[18]
{Lev06} Levy B.: Laplace-beltrami eigenfunctions: Towards an algorithm that understands geometry. In IEEE International Conference on Shape Modeling and Applications, invited talk (2006).
[19]
{LZ07} Liu R., Zhang H.: Mesh segmentation via spectral embedding and contour analysis. Computer Graphics Forum (Special Issue of Eurographics 2007) 26, 3 (2007), 385--394.
[20]
{MHK*08} Mateus D., Horaud R. P., Knossow D., Cuzzolin F., Boyer E.: Articulated shape matching using laplacian eigenfunctions and unsupervised point registration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2008).
[21]
{MTAD08} Mullen P., Tong Y., Alliez P., Desbrun M.: Spectral conformal parameterization. Computer Graphics Forum 27, 5 (July 2008), 1487--1494.
[22]
{NGH04} Ni X., Garland M., Hart J. C.: Fair morse functions for extracting the topological structure of a surface mesh. In SIGGRAPH '04: ACM SIGGRAPH 2004 Papers (New York, NY, USA, 2004), ACM, pp. 613--622.
[23]
{NISA06} Nealen A., Igarashi T., Sorkine O., Alexa M.: Laplacian mesh optimization. In GRAPHITE '06: Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia (New York, NY, USA, 2006), ACM, pp. 381--389.
[24]
{OSG08} Ovsjanikov M., Sun J., Guibas L.: Global intrinsic symmetries of shapes. Computer Graphics Forum 27, 5 (July 2008), 1341--1348.
[25]
{PP93} Pinkall U., Polthier K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2 (1993), 15--36.
[26]
{PSF08} Patane G., Spagnuolo M., Falcidieno B.: Reeb graph computation based on a minimal contouring. 2008 IEEE International Conference on Shape Modeling and Applications (2008), 73--82.
[27]
{RBG*09} Reuter M., Biasotti S., Giorgi D., Patane G., Spagnuolo M.: Discrete laplace-beltrami operators for shape analysis and segmentation.
[28]
{Reu06} Reuter M.: Laplace Spectra for Shape Recognition. Books on Demand GmbH, 2006.
[29]
{Ros97} Rosenberg S.: The Laplacian on a Riemannian Manifold. No. 31 in London Mathematical Society Student Texts. Cambridge University Press, 1997.
[30]
{Rus07} Rustamov R. M.: Laplace-beltrami eigenfunctions for deformation invariant shape representation. In SGP '07: Proceedings of the fifth Eurographics symposium on Geometry processing (Aire-la-Ville, Switzerland, Switzerland, 2007), Eurographics Association, pp. 225--233.
[31]
{RWP05} Reuter M., Wolter F.-E., Peinecke N.: Laplace-spectra as fingerprints for shape matching. In SPM '05: Proceedings of the 2005 ACM symposium on Solid and physical modeling (New York, NY, USA, 2005), ACM, pp. 101--106.
[32]
{SCOL*04} Sorkine O., Cohen-Or D., Lipman Y., Alexa M., Rössl C., Seidel H.-P.: Laplacian surface editing. In SGP '04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing (New York, NY, USA, 2004), ACM, pp. 175--184.
[33]
{SF01} Steiner D., Fischer A.: Topology recognition of 3d closed freeform objects based on topological graphs. In PG '01: Proceedings of the 9th Pacific Conference on Computer Graphics and Applications (Washington, DC, USA, 2001), IEEE Computer Society, p. 82.
[34]
{SLK*08} Shi Y., Lai R., Krishna S., Sicotte N., Dinov I., Toga A.: Anisotropic laplace-beltrami eigenmaps: Bridging reeb graphs and skeletons. pp. 1--7.
[35]
{Tie08} Tierny J.: Reeb graph based 3D shape modeling and applications. PhD thesis, TELECOM Lille 1, Universite des Sciences et Technologies de Lille, 2008.
[36]
{TVD07} Tierny J., Vandeborre J.-P., Daoudi M.: Topology driven 3D mesh hierarchical segmentation. In IEEE International Conference on Shape Modeling and Applications (SMI 2007) (Lyon, France, 2007), pp. 215--220.
[37]
{XZCOX09} Xu K., Zhang H., Cohen-Or D., Xiong Y.: Dynamic harmonic fields for surface processing. Computers and Graphics (Special Issue of Shape Modeling International) 33 (2009), 391--398.
[38]
{ZvKD07} Zhang H., van Kaick O., Dyer R.: Spectral methods for mesh processing and analysis. In Proc. of Eurographics State-of-the-art Report (2007), pp. 1--22.

Cited By

View all
  • (2022)The Hierarchical Subspace Iteration Method for Laplace–Beltrami EigenproblemsACM Transactions on Graphics10.1145/349520841:2(1-14)Online publication date: 4-Jan-2022
  • (2018)Discrete Time Evolution Process Descriptor for Shape Analysis and MatchingACM Transactions on Graphics10.1145/314445437:1(1-18)Online publication date: 29-Jan-2018
  • (2018)3D mesh watermarking using salient pointsMultimedia Tools and Applications10.1007/s11042-018-6252-677:24(32287-32309)Online publication date: 1-Dec-2018
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
SGP '09: Proceedings of the Symposium on Geometry Processing
July 2009
278 pages

Publisher

Eurographics Association

Goslar, Germany

Publication History

Published: 15 July 2009

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2022)The Hierarchical Subspace Iteration Method for Laplace–Beltrami EigenproblemsACM Transactions on Graphics10.1145/349520841:2(1-14)Online publication date: 4-Jan-2022
  • (2018)Discrete Time Evolution Process Descriptor for Shape Analysis and MatchingACM Transactions on Graphics10.1145/314445437:1(1-18)Online publication date: 29-Jan-2018
  • (2018)3D mesh watermarking using salient pointsMultimedia Tools and Applications10.1007/s11042-018-6252-677:24(32287-32309)Online publication date: 1-Dec-2018
  • (2017)Localized solutions of sparse linear systems for geometry processingACM Transactions on Graphics10.1145/3130800.313084936:6(1-8)Online publication date: 20-Nov-2017
  • (2017)3DensiNetProceedings of the 25th ACM international conference on Multimedia10.1145/3123266.3123340(961-969)Online publication date: 23-Oct-2017
  • (2017)Stochastic Heat Kernel Estimation on Sampled ManifoldsComputer Graphics Forum10.1111/cgf.1325136:5(131-138)Online publication date: 1-Aug-2017
  • (2017)Spectral Processing of Tangential Vector FieldsComputer Graphics Forum10.1111/cgf.1294236:6(338-353)Online publication date: 1-Sep-2017
  • (2017)Accurate and Efficient Computation of Laplacian Spectral Distances and KernelsComputer Graphics Forum10.1111/cgf.1279436:1(184-196)Online publication date: 1-Jan-2017
  • (2017)Spectral shape classificationJournal of Visual Communication and Image Representation10.1016/j.jvcir.2017.01.00143:C(198-211)Online publication date: 1-Feb-2017
  • (2017)Shape classification using spectral graph waveletsApplied Intelligence10.1007/s10489-017-0955-747:4(1256-1269)Online publication date: 1-Dec-2017
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media