[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Globally smooth parameterizations with low distortion

Published: 01 July 2003 Publication History

Abstract

Good parameterizations are of central importance in many digital geometry processing tasks. Typically the behavior of such processing algorithms is related to the smoothness of the parameterization and how much distortion it contains. Since a parameterization maps a bounded region of the plane to the surface, a parameterization for a surface which is not homeomorphic to a disc must be made up of multiple pieces. We present a novel parameterization algorithm for arbitrary topology surface meshes which computes a globally smooth parameterization with low distortion. We optimize the patch layout subject to criteria such as shape quality and metric distortion, which are used to steer a mesh simplification approach for base complex construction. Global smoothness is achieved through simultaneous relaxation over all patches, with suitable transition functions between patches incorporated into the relaxation procedure. We demonstrate the quality of our parameterizations through numerical evaluation of distortion measures and the excellent rate distortion performance of semi-regular remeshes produced with these parameterizations. The numerical algorithms required to compute the parameterizations are robust and run on the order of minutes even for large meshes.

Supplementary Material

MP4 File (litke_globally.mp4)

References

[1]
BIERMANN, H., MARTIN, I., BERNARDINI, F., AND ZORIN, D. 2002. Cut-and-Paste Editing of Multiresolution Surfaces. ACM Transactions on Graphics 21, 3, 312--321.
[2]
CIGNONI, P., ROCCHINI, C., AND SCOPIGNO, R. 1998. Metro: Measuring Error on Simpli ed Surfaces. Computer Graphics Forum 17, 2, 167--174.
[3]
DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002. Intrinsic Parameterizations of Surface Meshes. Computer Graphics Forum 21, 3, 209--218.
[4]
ECK, M., DEROSE, T. D., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND STUETZLE, W. 1995. Multiresolution Analysis of Arbitrary Meshes. In Proceedings of SIGGRAPH, 173--182.
[5]
FLOATER, M. S. 1997. Parameterization and Smooth Approximation of Surface Triangulations. Computer Aided Geometric Design 14, 3, 231--250.
[6]
FLOATER, M. S. 2003. Mean Value Coordinates. Computer Aided Geometric Design 20, 1, 19--27.
[7]
GARLAND, M., AND HECKBERT, P. S. 1997. Surface Simplification Using Quadric Error Metrics. In Proceedings of SIGGRAPH, 209--216.
[8]
GOTSMAN, C., GU, X., AND SHEFFER, A. 2003. Fundamentals of Spherical Parameterization for 3D Meshes. In Proceedings of SIGGRAPH.
[9]
GRIMM, C. M., AND HUGHES, J. F. 1995. Modeling Surfaces of Arbitrary Topology using Manifolds. In Proceedings of SIGGRAPH, 359--368.
[10]
GU, X., AND YAU, S.-T. 2003. Global Conformal Surface Parameterization. Submitted for publication, April.
[11]
GU X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry Images. ACM Transactions on Graphics 21, 3, 355--361.
[12]
GUSKOV, I., VIDIMČE, K., SWELDENS, W., AND SCHRÖDER, P. 2000. Normal Meshes. In Proceedings of SIGGRAPH, 95--102.
[13]
GUSKOV, I., KHODAKOVSKY, A., SCHRÖDER, P., AND SWELDENS, W. 2002. Hybrid Meshes: Multiresolution using Regular and Irregular Refinement. In Proceedings of the Eighteenth Annual Symposium on Computational Geometry, 264--272.
[14]
HOPPE, H. 1996. Progressive Meshes. In Proceedings of SIGGRAPH, 99--108.
[15]
HORMANN, K., AND GREINER, G. 2000. MIPS: An efficient Global Parametrization Method. In Curve and Surface Design: Saint-Malo 1999. Vanderbilt University Press, 153--162.
[16]
KHODAKOVSKY, A., AND GUSKOV, I. 2003. Compression of Normal Meshes. In Geometric Modeling for Scientific Visualization. Springer-Verlag.
[17]
KHODAKOVSKY, A., SCHRÖDER, P., AND SWELDENS, W. 2000. Progressive Geometry Compression. In Proceedings of SIGGRAPH, 271--278.
[18]
KOBBELT, L., CAMPAGNA, S., AND SEIDEL, H.-P. 1998. A General Framework for Mesh Decimation. In Graphics Interface '98, 43--50.
[19]
LEE, A. W. F., SWELDENS, W., SCHRÖDER, P., COWSAR, L., AND DOBKIN, D. 1998. MAPS: Multiresolution Adaptive Parameterization of Surfaces. In Proceedings of SIGGRAPH, 95--104.
[20]
LEE, A., DOBKIN, D., SWELDENS, W., AND SCHRÖDER, P. 1999. Multiresolution Mesh Morphing. In Proceedings of SIGGRAPH, 343--350.
[21]
LEE, A., MORETON, H., AND HOPPE, H. 2000. Displaced Subdivision Surfaces. In Proceedings of SIGGRAPH, 85--94.
[22]
LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least Squares Conformal Maps for Automatic Texture Atlas Generation. ACM Transactions on Graphics 21, 3, 362--371.
[23]
LOOP, C. 1987. Smooth Subdivision Surfaces Based on Triangles. Master's thesis, University of Utah, Department of Mathematics.
[24]
MAILLOT, J., YAHIA, H., AND VERROUST, A. 1993. Interactive Texture Mapping. In Proceedings of SIGGRAPH, 27--34.
[25]
PINKALL, U., AND POLTHIER, K. 1993. Computing Discrete Minimal Surfaces. Experimental Mathematics 2, 1, 15--36.
[26]
PRAUN, E., AND HOPPE, H. 2003. Spherical Parameterization and Remeshing. In Proceedings of SIGGRAPH.
[27]
SANDER, P. V., SNYDER, J., GORTLER, S. J., AND HOPPE, H. 2001. Texture Mapping Progressive Meshes. In Proceedings of SIGGRAPH, 409--416.
[28]
SANDER, P., GORTLER, S., SNYDER, J., AND HOPPE, H. 2002. Signal-Specialized Parameterization. In Eurographics Workshop on Rendering, 87--100.
[29]
SHEFFER, A., AND HART, J. C. 2002. Seamster: Inconspicuous Low-Distortion Texture Seam Layout. In IEEE Visualization, 291--298.
[30]
SHEWCHUK, J. R. 2002. What Is a Good Linear Element? Interpolation, Conditioning, and Quality Measures. Eleventh International Meshing Roundtable.
[31]
SORKINE, O., COHEN-OR, D., GOLDENTHAL, R., AND LISCHINSKI, D. 2002. Bounded-distortion Piecewise Mesh Parameterization. In IEEE Visualization, 355--362.
[32]
STRANG, G., AND NGUYEN, T. 1996. Wavelets and Filter Banks. Wellesley-Cambridge Press.
[33]
WOOD, Z. J., DESBRUN, M., SCHRÖDER, P., AND BREEN, D. 2000. Semi-Regular Mesh Extraction from Volumes. In IEEE Visualization, 275--282.
[34]
ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. 1996. Interpolating Subdivision for Meshes with Arbitrary Topology. In Proceedings of SIGGRAPH 96, 189--192.

Cited By

View all
  • (2023)Mean Value Coordinates for Closed Triangular MeshesSeminal Graphics Papers: Pushing the Boundaries, Volume 210.1145/3596711.3596737(223-228)Online publication date: 1-Aug-2023
  • (2023)Surface Simplification using Intrinsic Error MetricsACM Transactions on Graphics10.1145/359240342:4(1-17)Online publication date: 26-Jul-2023
  • (2023)VOLMAP: a Large Scale Benchmark for Volume Mappings to Simple Base DomainsComputer Graphics Forum10.1111/cgf.1491542:5Online publication date: 10-Aug-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 22, Issue 3
July 2003
683 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/882262
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 2003
Published in TOG Volume 22, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. compression
  2. parameterization
  3. rate distortion
  4. resampling
  5. smoothness

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)39
  • Downloads (Last 6 weeks)7
Reflects downloads up to 22 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Mean Value Coordinates for Closed Triangular MeshesSeminal Graphics Papers: Pushing the Boundaries, Volume 210.1145/3596711.3596737(223-228)Online publication date: 1-Aug-2023
  • (2023)Surface Simplification using Intrinsic Error MetricsACM Transactions on Graphics10.1145/359240342:4(1-17)Online publication date: 26-Jul-2023
  • (2023)VOLMAP: a Large Scale Benchmark for Volume Mappings to Simple Base DomainsComputer Graphics Forum10.1111/cgf.1491542:5Online publication date: 10-Aug-2023
  • (2023)Self-Parameterization Based Multi-Resolution Mesh Convolution NetworksComputer-Aided Design10.1016/j.cad.2023.103550162:COnline publication date: 13-Jul-2023
  • (2022)Subdivision-based Mesh Convolution NetworksACM Transactions on Graphics10.1145/350669441:3(1-16)Online publication date: 7-Mar-2022
  • (2021)Surface multigrid via intrinsic prolongationACM Transactions on Graphics10.1145/3476576.347663640:4(1-13)Online publication date: Aug-2021
  • (2021)Surface multigrid via intrinsic prolongationACM Transactions on Graphics10.1145/3450626.345976840:4(1-13)Online publication date: 19-Jul-2021
  • (2020)Neural subdivisionACM Transactions on Graphics10.1145/3386569.339241839:4(124:1-124:16)Online publication date: 12-Aug-2020
  • (2020)UV‐free Texturing using Sparse Voxel DAGsComputer Graphics Forum10.1111/cgf.1391739:2(121-132)Online publication date: 13-Jul-2020
  • (2020)Deep Patch-Based Human SegmentationNeural Information Processing10.1007/978-3-030-63830-6_20(229-240)Online publication date: 18-Nov-2020
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media