[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method

Published: 10 October 2006 Publication History

Abstract

We study the retraction and pinch-off of a liquid filament and the formation of drops by using an energetic variational phase field model, which describes the motion of mixtures of two incompressible fluids. An efficient and accurate numerical scheme is presented and implemented for the coupled nonlinear systems of Navier-Stokes type linear momentum equations and volume preserving Allen-Cahn type phase equations. Detailed numerical simulations for a Newtonian fluid filament falling into another ambient Newtonian fluid are carried out. The dynamical scaling behavior and the pinch-off behavior, as well as the formation of the consequent satellite droplets are investigated.

References

[1]
{1} D.M. Anderson, G.B. McFadden, A.A. Wheeler, Diffuse-interface methods in fluid mechanics, Appl. Math. Lett. 30 (4) (1998) 139-165.
[2]
{2} F. Boyer, A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids 31 (2004) 41-68.
[3]
{3} A.J. Bray, Theory of phase-ording kinetics, Adv. Phys. 51 (2002) 481-587.
[4]
{4} J.W. Cahn, J.E. Hillard, Free energy of a nonuniform system. I. International free energy, J. Chem. Phys. 28 (1958) 258-267.
[5]
{5} A.U. Chen, P.K. Notz, O.A. Basaran, Computational and experimental analysis of pinch-off and scaling, Phys. Rev. Lett. 88 (2002) 17-4501.
[6]
{6} Shiyi Chen, Gary D. Doolen, Lattice Boltzmann method for fluid flows, in: Annual Review of Fluid Mechanics, Annu. Rev. Fluid Mech., vol. 30, Annual Reviews, Palo Alto, CA, 1998, pp. 329-364.
[7]
{7} Shiyi Chen, Gary D. Doolen, Xiaoyi He, Xiaobo Nie, Raoyang Zhang, Recent advances in lattice Boltzmann methods, in: Fluid Dynamics at Interfaces (Gainesville, FL, 1998), Cambridge University Press, Cambridge, 1999, pp. 352-363.
[8]
{8} Q. Du, C. Liu, X. Wang, Retrieving topological information for phase field models, SIAM J. Appl. Math. 65 (2005) 1913-1923.
[9]
{9} Q. Du, J. Shen, B.Y. Guo, Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals, SIAM J. Numer. Anal. 39 (2001) 735-762.
[10]
{10} J.J. Feng, C. Liu, J. Shen, P. Yue, A energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: advantages and challenges, in: M.T. Calderer, E.M. Terentjev (Eds.), Modeling of Soft Matter, vol. IMA 141, Springer, New York, 2005, pp. 1-26.
[11]
{11} J.L. Guermond, J. Shen, On the error estimates of rotational pressure-correction projection methods, Math. Comput. 73 (2004) 1719-1737.
[12]
{12} D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski, Volume-of-fluid interface tracking with smoothed surface stress methods for three dimensional flows, J. Comput. Phys. 152 (1999) 423-456.
[13]
{13} E.A. Hauser, H.E. Edgerton, B.M. Holt, J.T. Cox Jr., The application of high speed motion picture camera to research on the surface tension of liquids, J. Phys. Chem. 40 (1936) 937-988.
[14]
{14} D. Henderson, H. Segur, L.B. Smolka, M. Wadati, The motion of a falling liquid filament, Phys. Fluids 12 (2000) 550-565.
[15]
{15} P.C. Hohenberg, B.I. Halperin, Theory of dynamic critical phenoma, Rev. Modern Phys. 49 (1977) 435-479.
[16]
{16} D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Comput. Phys. 155 (1999) 96-127.
[17]
{17} J.S. Kim, A continuous surface tension force formulation for diffuse-interface models, J. Comput. Phys. 204 (2005) 784-804.
[18]
{18} C. Liu, J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D 179 (2003) 211-228.
[19]
{19} C. Liu, J. Shen, J.J. Feng, P. Yue, Variational approach in two-phase flows of complex fluids: transport and induced elastic stress, in: A. Miranville (Ed.), Mathematical Models and Methods in Phase Transitions, Nova Publications, 2005.
[20]
{20} J.M. Lopez, J. Shen, An efficient spectral-projection method for the Navier-Stokes equations in cylindrical geometries I. Axisymmetric cases, J. Comput. Phys. 139 (1998) 308-326.
[21]
{21} P.K. Notz, O.A. Basaran, Dynamics and breakup of a contracting liquid filament, J. Fluid Mech. 512 (2004) 223-256.
[22]
{22} S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, vol. 153, Springer-Verlag, New York, 2003.
[23]
{23} Y. Renardy, M. Renardy, PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method, J. Comput. Phys. 183 (2) (2002) 400-421.
[24]
{24} N.D. Robinson, P.H. Steen, Observation of singularity formation during the capillary collapse and bubble pinch-off of a sop film bridge, J. Colloid Interface Sci. 241 (2001) 448-458.
[25]
{25} R. Schulkes, The evolution and bifurcation of a pendant drop, J. Fluid Mech. 278 (1994) 83-100.
[26]
{26} R. Schulkes, The contraction of liquid filaments, J. Fluid Mech. 309 (1996) 277-300.
[27]
{27} T. Seta, K. Kono, S. Chen, Lattice Boltzmann method for two-phase flows, Int. J. Modern Phys. B 17 (2003) 169.
[28]
{28} J.A. Sethian, Level Set Methods and Fast Marching Methods, 2nd ed.Cambridge Monographs on Applied and Computational Mathematics, vol. 3, Cambridge University Press, Cambridge, 1999.
[29]
{29} J. Shen, Efficient spectral-Galerkin method I. Direct solvers for second- and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput. 15 (1994) 1489-1505.
[30]
{30} J. Shen, Efficient spectral-Galerkin method III. Polar and cylindrical geometries, SIAM J. Sci. Comput. 18 (1997) 1039-1065.
[31]
{31} M.R. Swift, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett. 75 (1995) 83033.
[32]
{32} E.D. Wilkes, S.D. Phillips, O.A. Basaran, Computational and experimental analysis of dynamics of drop formulation, Phys. Fluids 11 (1999) 3577-3598.
[33]
{33} P. Yue, J.J. Feng, C. Liu, J. Shen, A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech. 515 (1) (2004) 293-317.
[34]
{34} P. Yue, J.J. Feng, C. Liu, J. Shen, Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids, J. Non-Newtonian Fluid Mech. 129 (2005) 163-176.
[35]
{35} P. Yue, J.J. Feng, C. Liu, J. Shen, Interfacial force and Marangoni flow on a nematic drop retracting in an isotropic fluid, J. Colloid Interface Sci. 290 (2005) 281-288.
[36]
{36} Raoyang Zhang, Xiaoyi He, Shiyi Chen, Interface and surface tension in incompressible lattice Boltzmann multiphase model, Comput. Phys. Commun. 129 (1-3) (2000) 121-130, Discrete simulation of fluid dynamics (Tokyo, 1999).
[37]
{37} X. Zhang, Dynamics of growth and breakup of viscous pendant drops into air, J. Collid Interface Sci. 212 (1999) 107-122.
[38]
{38} X. Zhang, O.A. Basaran, An experimental study of dynamics of drop formation, Phys. Fluids 7 (1995) 1184-1203.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational Physics
Journal of Computational Physics  Volume 218, Issue 1
10 October 2006
441 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 10 October 2006

Author Tags

  1. drop formation
  2. incompressible flow
  3. phase-field method
  4. pintching
  5. spectral method
  6. two phase flow

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A consistent phase-field model for three-phase flows with cylindrical/spherical interfacesJournal of Computational Physics10.1016/j.jcp.2024.113297516:COnline publication date: 1-Nov-2024
  • (2024)A novel technique for minimizing energy functional using neural networksEngineering Applications of Artificial Intelligence10.1016/j.engappai.2024.108313133:PDOnline publication date: 1-Jul-2024
  • (2024)Implicit Low-Rank Riemannian Schemes for the Time Integration of Stiff Partial Differential EquationsJournal of Scientific Computing10.1007/s10915-024-02629-8101:1Online publication date: 13-Aug-2024
  • (2023)Operator splitting based structure-preserving numerical schemes for the mass-conserving convective Allen-Cahn equationJournal of Computational Physics10.1016/j.jcp.2022.111695472:COnline publication date: 1-Jan-2023
  • (2023)Linearly implicit methods for Allen-Cahn equationApplied Mathematics and Computation10.1016/j.amc.2023.127984450:COnline publication date: 1-Aug-2023
  • (2021)Explicit Third-Order Unconditionally Structure-Preserving Schemes for Conservative Allen–Cahn EquationsJournal of Scientific Computing10.1007/s10915-021-01691-w90:1Online publication date: 19-Nov-2021
  • (2020)Linear second order energy stable schemes for phase field crystal growth models with nonlocal constraintsComputers & Mathematics with Applications10.1016/j.camwa.2019.07.03079:3(764-788)Online publication date: 1-Feb-2020
  • (2020)A fast Galerkin finite element method for a space–time fractional Allen–Cahn equationJournal of Computational and Applied Mathematics10.1016/j.cam.2019.112482368:COnline publication date: 1-Apr-2020
  • (2020)Error Analysis of a Decoupled, Linear Stabilization Scheme for the Cahn–Hilliard Model of Two-Phase Incompressible FlowsJournal of Scientific Computing10.1007/s10915-020-01241-w83:3Online publication date: 6-Jun-2020
  • (2019)Second Order Linear Energy Stable Schemes for Allen-Cahn Equations with Nonlocal ConstraintsJournal of Scientific Computing10.1007/s10915-019-00946-x80:1(500-537)Online publication date: 1-Jul-2019
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media