[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Implicit Low-Rank Riemannian Schemes for the Time Integration of Stiff Partial Differential Equations

Published: 13 August 2024 Publication History

Abstract

We propose two implicit numerical schemes for the low-rank time integration of stiff nonlinear partial differential equations. Our approach uses the preconditioned Riemannian trust-region method of Absil, Baker, and Gallivan, 2007. We demonstrate the efficiency of our method for solving the Allen–Cahn and the Fisher–KPP equations on the manifold of fixed-rank matrices. Our approach allows us to avoid the restriction on the time step typical of methods that use the fixed-point iteration to solve the inner nonlinear equations. Finally, we demonstrate the efficiency of the preconditioner on the same variational problems presented in Sutti and Vandereycken, 2021.

References

[1]
Absil PA, Baker CG, and Gallivan KA Trust-region methods on riemannian manifolds Found. of Comput. Math. 2007 7 303-330
[2]
Absil PA, Mahony R, and Sepulchre R Optimization Algorithms on Matrix Manifolds 2008 Princeton, NJ Princeton University Press
[3]
Absil PA and Malick J Projection-like retractions on matrix manifolds SIAM J. Optim. 2012 22 1 135-158
[4]
Absil PA and Oseledets IV Low-rank retractions: a survey and new results Comput. Optim. Appl. 2015 62 1 5-29
[5]
Allen SM and Cahn JW Ground state structures in ordered binary alloys with second neighbor interactions Acta Metall. 1972 20 3 423-433
[6]
Allen SM and Cahn JW A correction to the ground state of FCC binary ordered alloys with first and second neighbor pairwise interactions Scr. Metall. 1973 7 12 1261-1264
[7]
Beneš M, Chalupecký V, and Mikula K Geometrical image segmentation by the Allen-Cahn equation Appl. Numer. Math. 2004 51 2 187-205
[8]
Benzi M, Golub GH, and Liesen J Numerical solution of saddle point problems Acta. Numer. 2005 14 1-137
[9]
Billaud-Friess M, Falcó A, and Nouy A A new splitting algorithm for dynamical low-rank approximation motivated by the fibre bundle structure of matrix manifolds BIT Numer. Math. 2022 62 2 387-408
[10]
Boumal N An Introduction to Optimization on Smooth Manifolds 2023 Cambridge Cambridge University Press
[11]
Boumal N and Absil PA Low-rank matrix completion via preconditioned optimization on the Grassmann manifold Linear Algebra Appl. 2015 475 200-239
[12]
Boumal N, Mishra B, Absil PA, and Sepulchre R Manopt, a Matlab toolbox for optimization on manifolds J. Mach. Lear. Res. 2014 15 1455-1459
[13]
Brenner S and Scott R The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 2007 New York Springer
[14]
Cai, J.F., Huang, W., Wang, H., Wei, K.: Tensor completion via tensor train based low-rank quotient geometry under a preconditioned metric (2022)
[15]
Ceruti G, Kusch J, and Lubich C A rank-adaptive robust integrator for dynamical low-rank approximation BIT Numer. Math. 2022 62 4 1149-1174
[16]
Ceruti G and Lubich C An unconventional robust integrator for dynamical low-rank approximation BIT Numer. Math. 2022 62 1 23-44
[17]
Charous, A., Lermusiaux, P.: Dynamically orthogonal differential equations for stochastic and deterministic reduced-order modeling of ocean acoustic wave propagation. In: OCEANS 2021: San Diego – Porto, pp. 1–7 (2021).
[18]
Charous, A., Lermusiaux, P.F.J.: Stable rank-adaptive dynamically orthogonal runge-kutta schemes (2022)
[19]
Dieudonné J Foundations of Modern Analysis 1960 New York Academic Press
[20]
Dobrosotskaya JA and Bertozzi AL A wavelet-laplace variational technique for image deconvolution and inpainting IEEE Trans. Image Process. 2008 17 5 657-663
[21]
Edelman A, Arias TA, and Smith ST The geometry of algorithms with orthogonality constraints SIAM J. Matrix Anal. Appl. 1998 20 2 303-353
[22]
Feppon F and Lermusiaux PFJ Dynamically orthogonal numerical schemes for efficient stochastic advection and lagrangian transport SIAM Rev. 2018 60 3 595-625
[23]
Feppon F and Lermusiaux PFJ A geometric approach to dynamical model order reduction SIAM J. Matrix Anal. Appl. 2018 39 1 510-538
[24]
Fisher RA The wave of advance of advantageous genes Ann. Eug. 1937 7 4 355-369
[25]
Grasedyck L Existence of a low rank or H-matrix approximant to the solution of a Sylvester equation Numer. Linear Algebra with Appl. 2004 11 4 371-389
[26]
Gratton S, Sartenaer A, and Toint PL Recursive trust-region methods for multiscale nonlinear optimization SIAM J. Optim. 2008 19 1 414-444
[27]
Helmke U and Moore JB Optimization and Dynamical Systems 1994 London Springer-Verlag
[28]
Henderson HV and Searle SR The vec-permutation matrix, the vec operator and Kronecker products: a review Linear Multilinear Algebra 1981 9 4 271-288
[29]
Henson VE Bouman CA and Stevenson RL Multigrid methods nonlinear problems: an overview Computational Imaging 2003 US International Society for Optics and Photonics, SPIE 36-48
[30]
Hundsdorfer W and Verwer J Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations 2003 1 Berlin, Heidelberg Springer
[31]
Khatri CG and Rao CR Solutions to some functional equations and their applications to characterization of probability distributions Sankhyā Ser. A 1968 30 2 167-180
[32]
Kieri E, Lubich C, and Walach H Discretized dynamical low-rank approximation in the presence of small singular values SIAM J. Numer. Anal. 2016 54 2 1020-1038
[33]
Kieri E and Vandereycken B Projection methods for dynamical low-rank approximation of high-dimensional problems Comput. Methods Appl. Math. 2019 19 1 73-92
[34]
Koch O and Lubich C Dynamical low-rank approximation SIAM J. Matrix Anal. Appl. 2007 29 2 434-454
[35]
Kolmogorov, A.N., Petrowsky, I.G., Piskunov, N.S.: Studies of the diffusion with the increasing quantity of the substance; its application to a biological problem. In: O.A. Oleinik (ed.) I.G. Petrowsky Selected Works. Part II: Differential Equations and Probability Theory, Classics of Soviet Mathematics, vol. 5, first edn., chap. 6, pp. 106–132. CRC Press, London (1996).
[37]
Kressner D, Steinlechner M, and Vandereycken B Preconditioned low-rank riemannian optimization for linear systems with tensor product structure SIAM J. Sci. Comput. 2016 38 4 A2018-A2044
[38]
Kressner D and Tobler C Preconditioned low-rank methods for high-dimensional elliptic PDE eigenvalue problems Comput. Methods Appl. Math. 2011 11 3 363-381
[39]
Kressner D and Tobler C Algorithm 941: Htucker–a matlab toolbox for tensors in hierarchical tucker format ACM Trans. Math. Softw. 2014 40 3 22:1-22:22
[40]
Kürschner, P.: Efficient low-rank solution of large-scale matrix equations. Ph.D. thesis, Aachen (2016)
[41]
Laux T and Simon TM Convergence of the Allen-Cahn equation to multiphase mean curvature flow Commun. Pure Appl. Anal. 2018 71 8 1597-1647
[42]
Le Dret H and Lucquin B Partial Differential Equations: Modeling, Analysis and Numerical Approximation 2016 Basel Birkhäuser
[43]
Lee D and Lee S Image segmentation based on modified fractional Allen-Cahn equation Math. Probl. Eng. 2019 2019 3980181
[44]
Lee HG and Kim J An efficient and accurate numerical algorithm for the vector-valued Allen-Cahn equations Comput. Phys. Commun. 2012 183 10 2107-2115
[45]
Lermusiaux P Evolving the subspace of the three-dimensional multiscale ocean variability: massachusetts bay J. Mar. Syst. 2001 29 1 385-422 Three-Dimensional Ocean Circulation: Lagrangian measurements and diagnostic analyses
[46]
Lermusiaux, P.F.J., Robinson, A.R.: Data assimilation via error subspace statistical estimation. Part i: theory and schemes. Mon. Weather Rev. 127(7), 1385–1407 (1999). https://doi.org/10.1175/1520-0493(1999)127<1385:DAVESS>2.0.CO;2
[47]
Li Y, Jeong D, Choi J, Lee S, and Kim J Fast local image inpainting based on the Allen-Cahn model Digit. Signal Process. 2015 37 65-74
[48]
Lubich C and Oseledets IV A projector-splitting integrator for dynamical low-rank approximation BIT Numer. Math. 2014 54 1 171-188
[49]
Massei S, Robol L, and Kressner D Hierarchical adaptive low-rank format with applications to discretized partial differential equations Numer. Linear Algebra Appl. 2022 29 6 e2448
[50]
Mishra B, Meyer G, Bach F, and Sepulchre R Low-rank optimization with trace norm penalty SIAM J. Optim. 2013 23 4 2124-2149
[51]
Mishra B and Sepulchre R Riemannian preconditioning SIAM J. Optim. 2016 26 1 635-660
[52]
Mishra, B., Vandereycken, B.: A Riemannian approach to low-rank algebraic Riccati equations. In: 21st International Symposium on Mathematical Theory of Networks and Systems, pp. 965–968. Groningen, The Netherlands (2014)
[53]
Murray JD Mathematical Biology I. An Introduction 2002 3 New York, NY Springer
[54]
Musharbash E, Nobile F, and Vidličková E Symplectic dynamical low rank approximation of wave equations with random parameters BIT Numer. Math. 2020 60 4 1153-1201
[55]
Ngo, T., Saad, Y.: Scaled Gradients on Grassmann Manifolds for Matrix Completion. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Adv. Neural Inf. Process. Syst., vol. 25. Curran Associates Inc., USA (2012)
[56]
Nocedal J and Wright SJ Numerical Optimization 2006 2 New York, NY Springer
[57]
Rakhuba M, Novikov A, and Oseledets I Low-rank Riemannian eigensolver for high-dimensional Hamiltonians J. Comput. Phys. 2019 396 718-737
[58]
Rakhuba M and Oseledets I Jacobi-Davidson method on low-rank matrix manifolds SIAM J. Sci. Comput. 2018 40 2 A1149-A1170
[59]
Rodgers A, Dektor A, and Venturi D Adaptive integration of nonlinear evolution equations on tensor manifolds J. Sci. Comput. 2022 92 2 39
[60]
Rodgers A and Venturi D Implicit step-truncation integration of nonlinear PDEs on low-rank tensor manifolds J. Sci. Comput. 2022 97 2 33 arXiv:2207.01962
[61]
Sapsis TP and Lermusiaux PF Dynamically orthogonal field equations for continuous stochastic dynamical systems Phys. D: Nonlinear Phenom. 2009 238 23 2347-2360
[62]
Shalit, U., Weinshall, D., Chechik, G.: Online Learning in The Manifold of Low-Rank Matrices. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Adv. Neural Inf. Process. Syst., vol. 23. Curran Associates Inc., USA (2010)
[63]
Shalit U, Weinshall D, and Chechik G Online learning in the embedded manifold of low-rank matrices J. Mach. Lear. Res. 2012 13 429-458
[64]
Simoncini V Computational methods for linear matrix equations SIAM Rev. 2016 58 3 377-441
[65]
Steihaug T The conjugate gradient method and trust regions in large scale optimization SIAM J. Numer. Anal. 1983 20 3 626-637
[66]
Steinlechner M Riemannian optimization for high-dimensional tensor completion SIAM J. Sci. Comput. 2016 38 5 S461-S484
[67]
Sutti, M.: Riemannian algorithms on the stiefel and the fixed-rank manifold. Ph.D. thesis, University of Geneva (2020). ID: unige:146438
[68]
Sutti, M., Vandereycken, B.: RMGLS: A MATLAB algorithm for Riemannian multilevel optimization. Available online (2020).
[69]
Sutti M and Vandereycken B Riemannian multigrid line search for low-rank problems SIAM J. Sci. Comput. 2021 43 3 A1803-A1831
[70]
Toint, P.L.: Towards an efficient sparsity exploiting Newton method for minimization. In: Sparse Matrices and Their Uses, pp. 57–88. Academic Press, London, England (1981)
[71]
Ueckermann M, Lermusiaux P, and Sapsis T Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows J. Comput. Phys. 2013 233 272-294
[72]
Uschmajew, A., Vandereycken, B.: Geometric methods on low-rank matrix and tensor manifolds, chap. 9, pp. 261–313. Springer International Publishing, Cham (2020).
[73]
Van Loan CF The ubiquitous Kronecker product J. Comput. and Appl. Math. 2000 123 1–2 85-100
[74]
Vandereycken B Low-rank matrix completion by riemannian optimization SIAM J. Optim. 2013 23 2 1214-1236
[75]
Vandereycken B and Vandewalle S A riemannian optimization approach for computing low-rank solutions of Lyapunov equations SIAM J. Matrix Anal. Appl. 2010 31 5 2553-2579
[76]
Wen Z and Goldfarb D A line search multigrid method for large-scale nonlinear optimization SIAM J. Optim. 2009 20 3 1478-1503
[77]
Yang X, Feng JJ, Liu C, and Shen J Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method J. Comput. Phys. 2006 218 1 417-428
[78]
Yoon S, Jeong D, Lee C, Kim H, Kim S, Lee HG, and Kim J Fourier-spectral method for the phase-field equations Mathematics 2020 8 8 1385

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Scientific Computing
Journal of Scientific Computing  Volume 101, Issue 1
Oct 2024
671 pages

Publisher

Plenum Press

United States

Publication History

Published: 13 August 2024
Accepted: 17 July 2024
Revision received: 17 June 2024
Received: 19 May 2023

Author Tags

  1. Implicit methods
  2. Numerical time integration
  3. Riemannian optimization
  4. Stiff PDEs
  5. Manifold of fixed-rank matrices
  6. Variational problems
  7. Preconditioning
  8. Trust-region method
  9. Allen–Cahn equation
  10. Fisher–KPP equation

Author Tags

  1. 65F08
  2. 65F55
  3. 65L04
  4. 65F45
  5. 65N22
  6. 65K10
  7. 58C05

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media