[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Linearly implicit methods for Allen-Cahn equation

Published: 01 August 2023 Publication History

Highlights

Construction of linearly implicit gradient stable methods by polarizing the energy functional.
A two-step version of the linearly implicit Kahan’s method provides accurate solutions with a less computational cost for Allen-Cahn equation.
Polarized and non-polarized energies dissipate at the same rate.

Abstract

It is well known that the Allen-Cahn equation satisfies a nonlinear stability property, i.e., the free-energy functional decreases in time. Linearly implicit integrators have been developed for energy-preserving methods for conservative systems with polynomial Hamiltonians, which are based on the concept of polarization. In this paper, we construct linearly implicit methods for gradient flows preserving the energy dissipation by polarizing the free-energy functional. Two-step linearly implicit methods are derived for the Allen-Cahn equation inheriting energy dissipation law. Numerical experiments for one-, two-, and three-dimensional Allen-Cahn equations demonstrate the energy dissipation and the accuracy of the linearly implicit methods.

References

[1]
S.M. Allen, J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27 (6) (1979) 1085–1095,.
[2]
L.Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res. 32 (1) (2002) 113–140,.
[3]
X. Yang, J.J. Feng, C. Liu, J. Shen, Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method, J. Comput. Phys. 218 (1) (2006) 417–428,.
[4]
M. Beneš, V. Chalupecký, K. Mikula, Geometrical image segmentation by the Allen-Cahn equation, Appl. Numer. Math. 51 (2) (2004) 187–205,.
[5]
X. Feng, A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numerische Mathematik 94 (1) (2003) 33–65,.
[6]
D.J. Eyre, An unconditionally stable one-step scheme for gradient systems, IEEE Trans. Image Process. (1997).
[7]
J.W. Choi, H.G. Lee, D. Jeong, J. Kim, An unconditionally gradient stable numerical method for solving the Allen-Cahn equation, Phys. A. Stat. Mech. Appl. 388 (9) (2009) 1791–1803,.
[8]
Z. Guan, J.S. Lowengrub, C. Wang, S.M. Wise, Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations, J. Comput. Phys. 277 (2014) 48–71,.
[9]
X. Feng, H. Song, T. Tang, J. Yang, Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation, Inverse Probl. Imag. 7 (3) (2013) 679–695,.
[10]
X. Feng, T. Tang, J. Yang, Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models, East Asian J. Appl. Math. 3 (1) (2013) 59–80,.
[11]
X. Yang, G.-D. Zhang, Convergence analysis for the invariant energy quadratization (IEQ) schemes for solving the Cahn–Hilliard and Allen–Cahn equations with general nonlinear potential, J. Sci. Comput. 82 (3) (2020) 55,.
[12]
J. Shen, J. Xu, J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys. 353 (2018) 407–416,.
[13]
W. Kahan, R.-C. Li, Unconventional schemes for a class of ordinary differential equations—with applications to the Korteweg-de Vries equation, J. Comput. Phys. 134 (2) (1997) 316–331,.
[14]
E. Celledoni, R.I. McLachlan, B. Owren, G.R.W. Quispel, Geometric properties of Kahan’s method, J. Phys. A. Math. Theor. 46 (2) (2013) 025201,12,.
[15]
C. Besse, A relaxation scheme for the nonlinear schrödinger equation, SIAM J. Numer. Anal. 42 (3) (2004) 934–952,.
[16]
Z. Fei, V.M. Pérez-García, L. Vázquez, Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme, Appl. Math. Comput. 71 (2) (1995) 165–177,.
[17]
S. Eidnes, L. Li, S. Sato, Linearly implicit structure-preserving schemes for Hamiltonian systems, J. Comput. Appl. Math. 387 (2021) 112489,.
[18]
J. Cai, B. Shen, Linearly implicit local energy-preserving algorithm for a class of multi-symplectic Hamiltonian PDEs, Comput. Appl. Math. 41 (1) (2021) 33,.
[19]
B.K. Tapley, Geometric integration of ODEs using multiple quadratic auxiliary variables, SIAM J. Sci. Comput. 44 (4) (2022) A2651–A2668,.
[20]
M. Dahlby, B. Owren, A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci. Comput. 33 (5) (2011) 2318–2340,.
[21]
D. Furihata, T. Matsuo, Discrete variational derivative method, Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC Press, Boca Raton, FL, 2011.
[22]
G.R.W. Quispel, D.I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A. Math. Theor. 41 (4) (2008) 045206,7,.
[23]
E. Celledoni, V. Grimm, R.I. McLachlan, D.I. McLaren, D. O’Neale, B. Owren, G.R.W. Quispel, Preserving energy resp. dissipation in numerical PDEs using the ‘average vector field’ method, J. Comput. Phys. 231 (20) (2012) 6770–6789,.
[24]
E. Hairer, C. Lubich, Energy-diminishing integration of gradient systems, IMA J. Numer. Anal. 34 (2) (2014) 452–461,.
[25]
B. Karasözen, M. Uzunca, A. Sariaydin-Filibelioğlu, H. Yücel, Energy stable discontinuous Galerkin finite element method for the Allen-Cahn equation, Int. J. Comput. Methods 15 (3) (2018) 1850013,26,.
[26]
K. Poochinapan, B. Wongsaijai, Numerical analysis for solving Allen-Cahn equation in 1D and 2D based on higher-order compact structure-preserving difference scheme, Appl. Math. Comput. 434 (2022) 127374,.
[27]
Y. Li, H.G. Lee, D. Jeong, J. Kim, An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation, Comput. Math. Appl. 60 (6) (2010) 1591–1606,.
[28]
J. Kim, H.G. Lee, A new conservative vector-valued Allen-Cahn equation and its fast numerical method, Comput. Phys. Commun. 221 (2017) 102–108,.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Applied Mathematics and Computation
Applied Mathematics and Computation  Volume 450, Issue C
Aug 2023
369 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 01 August 2023

Author Tags

  1. Allen-Cahn equation
  2. Gradient systems
  3. Energy dissipation
  4. Linearly implicit methods

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media