[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-031-33455-9_9guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

REGNUM: Generating Logical Rules with Numerical Predicates in Knowledge Graphs

Published: 28 May 2023 Publication History

Abstract

Mining logical rules from a knowledge graph (KG) can reveal useful patterns for predicting facts, curating the KG, and identifying trends. However, many rule mining systems face challenges when working with numerical data because numerical predicates can take a large number of values, leading to a huge search space. In this work, we present REGNUM, a system that addresses this issue by generating rules with numerical constraints. REGNUM extends the body of rules mined from a KG by using supervised discretization of numerical values with decision trees to increase the confidence of the rules without sacrificing significance. Our experimental results show that the numerical rules have a higher overall quality than the parent rules and are effective at making better predictions.

References

[1]
Ahmadi, N., Lee, J., Papotti, P., Saeed, M.: Explainable fact checking with probabilistic answer set programming. CoRR abs/1906.09198 (2019)
[2]
Aumann, Y., Lindell, Y.: A statistical theory for quantitative association rules. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 1999, pp. 261–270. Association for Computing Machinery, New York (1999).
[3]
Betz P, Meilicke C, Stuckenschmidt H, et al. Groth P et al. Supervised knowledge aggregation for knowledge graph completion European Semantic Web Conference 2022 Cham Springer 74-92
[4]
Breiman L, Friedman J, Stone CJ, and Olshen RA Classification and Regression Trees 1984 Milton Park Taylor & Francis
[5]
Bühmann L, Lehmann J, and Westphal P Dl-learner-a framework for inductive learning on the semantic web J. Web Semant. 2016 39 15-24
[6]
Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann (1995)
[7]
Dehaspe L and Toironen H Džeroski S and Lavrač N Discovery of Relational Association Rules Relational Data Mining 2001 Heidelberg Springer 189-208
[8]
Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: IJCAI (1993)
[9]
Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting completeness in knowledge bases. In: de Rijke, M., Shokouhi, M., Tomkins, A., Zhang, M. (eds.) Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, Cambridge, United Kingdom, 6–10 February 2017, pp. 375–383. ACM (2017)
[10]
Galárraga L, Teflioudi C, Hose K, and Suchanek FM Fast rule mining in ontological knowledge bases with AMIE+ VLDB J. 2015 24 6 707-730
[11]
Galárraga, L.A., Preda, N., Suchanek, F.M.: Mining rules to align knowledge bases. In: Proceedings of the 2013 Workshop on Automated Knowledge Base Construction, AKBC@CIKM 2013, San Francisco, California, USA, 27–28 October 2013, pp. 43–48. ACM (2013)
[12]
García-Durán, A., Niepert, M.: KBLRN: end-to-end learning of knowledge base representations with latent, relational, and numerical features. In: Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence (UAI) (2018)
[13]
Gesese GA, Alam M, Sack H, et al. Hotho A et al. LiterallyWikidata - a benchmark for knowledge graph completion using literals The Semantic Web – ISWC 2021 2021 Cham Springer 511-527
[14]
Hühn J and Hüllermeier E FURIA: an algorithm for unordered fuzzy rule induction Data Mining Knowl. Discov. 2009 19 3 293-319
[15]
Jaramillo IF, Garzás J, and Redchuk A Numerical association rule mining from a defined schema using the VMO algorithm Appl. Sci. 2021 11 13 6154
[16]
Khajeh Nassiri, A., Pernelle, N., Saïs, F., Quercini, G.: Generating referring expressions from RDF knowledge graphs for data linking. In: The Semantic Web – ISWC 2020 (2020)
[17]
Lajus J, Galárraga L, Suchanek F, et al. Harth A et al. Fast and exact rule mining with AMIE 3 The Semantic Web 2020 Cham Springer 36-52
[18]
Meilicke, C., Chekol, M.W., Fink, M., Stuckenschmidt, H.: Reinforced anytime bottom up rule learning for knowledge graph completion. arXiv preprint arXiv:2004.04412 (2020)
[19]
Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule learning for knowledge graph completion. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, pp. 3137–3143 (7 2019)
[20]
Minaei-Bidgoli, B., Barmaki, R., Nasiri, M.: Mining numerical association rules via multi-objective genetic algorithms. Inf. Sci. 233, 15–24 (2013). https://www.sciencedirect.com/science/article/pii/S0020025513001072
[21]
Muggleton S Muggleton S Learning from positive data Inductive Logic Programming 1997 Heidelberg Springer 358-376
[22]
Navas-Palencia, G.: Optimal binning: mathematical programming formulation abs/2001.08025 (2020). http://arxiv.org/abs/2001.08025
[23]
Ortona, S., Meduri, V.V., Papotti, P.: Robust discovery of positive and negative rules in knowledge bases. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp. 1168–1179 (2018)
[24]
Ortona S, Meduri VV, and Papotti P Rudik: rule discovery in knowledge bases Proc. VLDB Endow. 2018 11 12 1946-1949
[25]
Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: DRUM: End-to-End Differentiable Rule Mining on Knowledge Graphs. Curran Associates Inc., Red Hook (2019)
[26]
Salleb-Aouissi, A., Vrain, C., Nortet, C.: Quantminer: a genetic algorithm for mining quantitative association rules. In: IJCAI, pp. 1035–1040 (2007)
[27]
Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. In: ACM SIGMOD Conference (1996)
[28]
Wang, P.W., Stepanova, D., Domokos, C., Kolter, J.Z.: Differentiable learning of numerical rules in knowledge graphs. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=rJleKgrKwS
[29]
Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)
[30]
Zeng Q, Patel JM, and Page D Quickfoil: scalable inductive logic programming Proc. VLDB Endow. 2014 8 3 197-208

Cited By

View all
  • (2023)SPaRKLE : Symbolic caPtuRing of knowledge for Knowledge graph enrichment with LEarningProceedings of the 12th Knowledge Capture Conference 202310.1145/3587259.3627547(44-52)Online publication date: 5-Dec-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
The Semantic Web: 20th International Conference, ESWC 2023, Hersonissos, Crete, Greece, May 28–June 1, 2023, Proceedings
May 2023
741 pages
ISBN:978-3-031-33454-2
DOI:10.1007/978-3-031-33455-9

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 28 May 2023

Author Tags

  1. Rule Mining
  2. Numerical Predicates
  3. KG Completion

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)SPaRKLE : Symbolic caPtuRing of knowledge for Knowledge graph enrichment with LEarningProceedings of the 12th Knowledge Capture Conference 202310.1145/3587259.3627547(44-52)Online publication date: 5-Dec-2023

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media