Abstract
Within KDD, the discovery of frequent patterns has been studied in a variety of settings. In its simplest form, known from association rule mining, the task is to discover all frequent item sets, i.e., all combinations of items that are found in a sufficient number of examples. We present algorithms for relational association rule discovery that are well-suited for exploratory data mining. They offer the flexibility required to experiment with examples more complex than feature vectors and patterns more complex than item sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H. Adé, L. De Raedt, and M. Bruynooghe. Declarative bias for specific-togeneral ILP systems. Machine Learning, 20(1/2): 119–154, 1995.
R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 207–216. ACM Press, New York, 1993.
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of association rules. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 307–328. AAAI Press, Menlo Park, CA, 1996.
R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the Eleventh International Conference on Data Engineering, pages 3–14. IEEE Computer Society Press, Los Alamitos, CA, 1995.
H. Blockeel and L. De Raedt. Relational knowledge discovery in databases. In Proceedings of the Sixth International Workshop on Inductive Logic Programming, pages 199–212. Springer, Berlin, 1996.
H. Blockeel and L. De Raedt. Top-down induction of first order logical decision trees. Artificial Intelligence, 101(1–2): 285–297, 1998.
H. Blockeel, L. De Raedt, N. Jacobs, and B. Demoen. Scaling up inductive logic programming by learning from interpretations. Data Mining and Knowledge Discovery, 3(1): 59–93, 1999.
I. Bratko. Prolog Programming for Artificial Intelligence, 2nd edition. Addison-Wesley, Wokingham, England, 1990.
L. Dehaspe. Frequent Pattern Discovery in First-Order Logic. PhD thesis. Department of Computer Science, Katholieke Universiteit Leuven, Belgium, 1998. Available at http://www.cs.kuleuven.ac.be/~ldh/.
L. Dehaspe and L. De Raedt. Mining association rules in multiple relations. In Proceedings of the Seventh International Workshop on Inductive Logic Programming, pages 125–132. Springer, Berlin, 1997.
L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Mining and Knowledge Discovery, 3(1): 7–36, 1999.
L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures in chemical compounds. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, pages 30–36. AAAI Press, Menlo Park, CA, 1998.
R. Elmasri and S. B. Navathe. Fundamentals of Database Systems, 2nd edition. Benjamin/Cummings, Redwood City, CA, 1989.
J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. In Proceedings of the Twenty-first International Conference on Very Large Data Bases, pages 420–431. Morgan Kaufmann, San Mateo, CA, 1995.
M. Holsheimer, M. Kersten, H. Mannila, and H. Toivonen. A perspective on databases and data mining. In Proceedings of the First International Conference on Knowledge Discovery and Data Mining, pages 150–155. AAAI Press, Menlo Park, CA, 1995.
W. Kloesgen. Problems for knowledge discovery in databases and their treatment in the statistics interpreter EXPLORA. International Journal of Intelligent Systems, 7(7): 649–673, 1992.
W. Kloesgen. EXPLORA: A multipattern and multistrategy discovery assistant. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 249–271. AAAI Press, Menlo Park, CA, 1996.
G. Lindner and K. Morik. Coupling a relational learning algorithm with a database system. In Proceedings of the MLnet Familiarization Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, FORTH, Heraklion, Greece, 1995.
H. Lu, R. Setiono, and H. Liu. Neurorule: A connectionist approach to data mining. In Proceedings of the Twenty-first International Conference on Very Large Data Bases, pages 478–489. Morgan Kaufmann, San Mateo, CA, 1995.
H. Mannila. Database methods for data mining. Tutorial notes, Fourth International Conference on Knowledge Discovery and Data Mining. Technical report, AAAI Press, Menlo Park, CA, 1998.
H. Mannila and H. Toivonen. Discovering generalized episodes using minimal occurrences. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pages 146–151. AAAI Press, Menlo Park, CA, 1996.
H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery, 1(3): 241–258, 1997.
H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1(3): 259–289, 1997.
T. Mitchell. Generalization as search. Artificial Intelligence, 18: 203–226, 1982.
S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13, 1995.
S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal of Logic Programming, 19, 20: 629–679, 1994.
C. Nédellec, H. Adé, F. Bergadano, and B. Tausend. Declarative bias in ILP. In L. De Raedt, editor, Advances in Inductive Logic Programming, pages 82–103. IOS Press, Amsterdam, 1996.
G. Plotkin. A note on inductive generalization. In Machine Intelligence, pages 153–163. Edinburgh University Press, Edinburgh, 1970.
S. L. Salzberg. On comparing classifiers: pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1(3): 317–328, 1997.
A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. In Proceedings of the Twenty-first International Conference on Very Large Data Bases, pages 432–444. Morgan Kaufmann, San Mateo, CA, 1995.
R. Srikant and R. Agrawal. Mining generalized association rules. In Proceedings of the Twenty-first International Conference on Very Large Data Bases, pages 407–419. Morgan Kaufmann, San Mateo, CA, 1995.
R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements. In Proceedings of the Fifth International Conference on Extending Database Technology, pages 3–17. Springer, Berlin, 1996.
R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. In Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, pages 67–73. AAAI Press, Menlo Park, CA, 1997.
L. Sterling and E. Shapiro. The art of Prolog. MIT Press, Cambridge, MA, 1986.
H. Toivonen. Sampling large databases for association rules. In Proceedings of the Twenty-second International Conference on Very Large Data Bases, pages 134–145. Morgan Kaufmann, San Mateo, CA, 1996.
I. Weber. Discovery of first-order regularities in a relational database using offline candidate determination. In Proceedings of the Seventh International Workshop on Inductive Logic Programming, pages 288–295. Springer, Berlin, 1997.
I. Weber. A declarative language bias for levelwise search of first-order regularities. In Proceedings of Fachgruppentreffen Maschinelles Lernen. Technischer Bericht 98/11, Technische Universität, Berlin, 1998. http://www.informatik.uni-stuttgart.de/ifi/is/Personen/Irene/fgm198.ps.gz.
S. Wrobel. An algorithm for multi-relational discovery of subgroups. In Proceedings of the First European Symposium on Principles of Data Mining and Knowledge Discovery, pages 78–87. Springer, Berlin, 1997.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Dehaspe, L., Toivonen, H. (2001). Discovery of Relational Association Rules. In: Džeroski, S., Lavrač, N. (eds) Relational Data Mining. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04599-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-662-04599-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-07604-6
Online ISBN: 978-3-662-04599-2
eBook Packages: Springer Book Archive