[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

REGNUM: Generating Logical Rules with Numerical Predicates in Knowledge Graphs

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2023)

Abstract

Mining logical rules from a knowledge graph (KG) can reveal useful patterns for predicting facts, curating the KG, and identifying trends. However, many rule mining systems face challenges when working with numerical data because numerical predicates can take a large number of values, leading to a huge search space. In this work, we present REGNUM, a system that addresses this issue by generating rules with numerical constraints. REGNUM extends the body of rules mined from a KG by using supervised discretization of numerical values with decision trees to increase the confidence of the rules without sacrificing significance. Our experimental results show that the numerical rules have a higher overall quality than the parent rules and are effective at making better predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Membership to a class, can also be represented with a binary predicate, i.e., type(X, Y).

  2. 2.

    Variables are represented using lowercase letters whereas capitalized letters denote constants.

  3. 3.

    https://www.stardog.com/.

  4. 4.

    https://github.com/armitakhn/REGNUM.

References

  1. Ahmadi, N., Lee, J., Papotti, P., Saeed, M.: Explainable fact checking with probabilistic answer set programming. CoRR abs/1906.09198 (2019)

    Google Scholar 

  2. Aumann, Y., Lindell, Y.: A statistical theory for quantitative association rules. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 1999, pp. 261–270. Association for Computing Machinery, New York (1999). https://doi.org/10.1145/312129.312243

  3. Betz, P., Meilicke, C., Stuckenschmidt, H.: Supervised knowledge aggregation for knowledge graph completion. In: Groth, P., et al. (eds.) ESWC 2022. LNCS, vol. 13261, pp. 74–92. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06981-9_5

    Chapter  Google Scholar 

  4. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Taylor & Francis, Milton Park (1984)

    MATH  Google Scholar 

  5. Bühmann, L., Lehmann, J., Westphal, P.: Dl-learner-a framework for inductive learning on the semantic web. J. Web Semant. 39, 15–24 (2016)

    Article  Google Scholar 

  6. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann (1995)

    Google Scholar 

  7. Dehaspe, L., Toironen, H.: Discovery of Relational Association Rules. In: Džeroski, S., Lavrač, N. (eds.) Relational Data Mining, pp. 189–208. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04599-2_8

    Chapter  Google Scholar 

  8. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: IJCAI (1993)

    Google Scholar 

  9. Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting completeness in knowledge bases. In: de Rijke, M., Shokouhi, M., Tomkins, A., Zhang, M. (eds.) Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, Cambridge, United Kingdom, 6–10 February 2017, pp. 375–383. ACM (2017)

    Google Scholar 

  10. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)

    Article  Google Scholar 

  11. Galárraga, L.A., Preda, N., Suchanek, F.M.: Mining rules to align knowledge bases. In: Proceedings of the 2013 Workshop on Automated Knowledge Base Construction, AKBC@CIKM 2013, San Francisco, California, USA, 27–28 October 2013, pp. 43–48. ACM (2013)

    Google Scholar 

  12. García-Durán, A., Niepert, M.: KBLRN: end-to-end learning of knowledge base representations with latent, relational, and numerical features. In: Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence (UAI) (2018)

    Google Scholar 

  13. Gesese, G.A., Alam, M., Sack, H.: LiterallyWikidata - a benchmark for knowledge graph completion using literals. In: Hotho, A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 511–527. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88361-4_30

    Chapter  Google Scholar 

  14. Hühn, J., Hüllermeier, E.: FURIA: an algorithm for unordered fuzzy rule induction. Data Mining Knowl. Discov. 19(3), 293–319 (2009). https://doi.org/10.1007/s10618-009-0131-8

    Article  MathSciNet  Google Scholar 

  15. Jaramillo, I.F., Garzás, J., Redchuk, A.: Numerical association rule mining from a defined schema using the VMO algorithm. Appl. Sci. 11(13), 6154 (2021). https://doi.org/10.3390/app11136154

    Article  Google Scholar 

  16. Khajeh Nassiri, A., Pernelle, N., Saïs, F., Quercini, G.: Generating referring expressions from RDF knowledge graphs for data linking. In: The Semantic Web – ISWC 2020 (2020)

    Google Scholar 

  17. Lajus, J., Galárraga, L., Suchanek, F.: Fast and exact rule mining with AMIE 3. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 36–52. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_3

    Chapter  Google Scholar 

  18. Meilicke, C., Chekol, M.W., Fink, M., Stuckenschmidt, H.: Reinforced anytime bottom up rule learning for knowledge graph completion. arXiv preprint arXiv:2004.04412 (2020)

  19. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule learning for knowledge graph completion. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, pp. 3137–3143 (7 2019)

    Google Scholar 

  20. Minaei-Bidgoli, B., Barmaki, R., Nasiri, M.: Mining numerical association rules via multi-objective genetic algorithms. Inf. Sci. 233, 15–24 (2013). https://doi.org/10.1016/j.ins.2013.01.028. https://www.sciencedirect.com/science/article/pii/S0020025513001072

  21. Muggleton, S.: Learning from positive data. In: Muggleton, S. (ed.) ILP 1996. LNCS, vol. 1314, pp. 358–376. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63494-0_65

    Chapter  MATH  Google Scholar 

  22. Navas-Palencia, G.: Optimal binning: mathematical programming formulation abs/2001.08025 (2020). http://arxiv.org/abs/2001.08025

  23. Ortona, S., Meduri, V.V., Papotti, P.: Robust discovery of positive and negative rules in knowledge bases. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp. 1168–1179 (2018)

    Google Scholar 

  24. Ortona, S., Meduri, V.V., Papotti, P.: Rudik: rule discovery in knowledge bases. Proc. VLDB Endow. 11(12), 1946–1949 (2018)

    Article  Google Scholar 

  25. Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: DRUM: End-to-End Differentiable Rule Mining on Knowledge Graphs. Curran Associates Inc., Red Hook (2019)

    Google Scholar 

  26. Salleb-Aouissi, A., Vrain, C., Nortet, C.: Quantminer: a genetic algorithm for mining quantitative association rules. In: IJCAI, pp. 1035–1040 (2007)

    Google Scholar 

  27. Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. In: ACM SIGMOD Conference (1996)

    Google Scholar 

  28. Wang, P.W., Stepanova, D., Domokos, C., Kolter, J.Z.: Differentiable learning of numerical rules in knowledge graphs. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=rJleKgrKwS

  29. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  30. Zeng, Q., Patel, J.M., Page, D.: Quickfoil: scalable inductive logic programming. Proc. VLDB Endow. 8(3), 197–208 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the project PSPC AIDA: 2019-PSPC-09 funded by BPI-France.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Armita Khajeh Nassiri , Nathalie Pernelle or Fatiha Saïs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khajeh Nassiri, A., Pernelle, N., Saïs, F. (2023). REGNUM: Generating Logical Rules with Numerical Predicates in Knowledge Graphs. In: Pesquita, C., et al. The Semantic Web. ESWC 2023. Lecture Notes in Computer Science, vol 13870. Springer, Cham. https://doi.org/10.1007/978-3-031-33455-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33455-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33454-2

  • Online ISBN: 978-3-031-33455-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics