[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Implicit-Explicit Difference Schemes for Nonlinear Fractional Differential Equations with Nonsmooth Solutions

Published: 01 January 2016 Publication History

Abstract

We propose second-order implicit-explicit (IMEX) time-stepping schemes for nonlinear fractional differential equations with fractional order $0<\beta<1$. From the known structure of the nonsmooth solution and by introducing corresponding correction terms, we can obtain uniformly second-order accuracy from these schemes. We prove the convergence and linear stability of the proposed schemes. Numerical examples illustrate the flexibility and efficiency of the IMEX schemes and show that they are effective for nonlinear and multirate fractional differential systems as well as multiterm fractional differential systems with nonsmooth solutions.

References

[1]
W. Cao, Z. Zhang, and G. E. Karniadakis, Time-splitting schemes for fractional differential equations I: Smooth solutions, SIAM J. Sci. Comput., 37 (2015), pp. A1752--A1776.
[2]
Y. Cao, T. Herdman, and Y. Xu, A hybrid collocation method for Volterra integral equations with weakly singular kernels, SIAM J. Numer. Anal., 41 (2003), pp. 364--381.
[3]
S. Chen, F. Liu, X. Jiang, I. Turner, and V. Anh, A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients, Appl. Math. Comput., 257 (2015), pp. 591--601.
[4]
E. Cuesta, C. Lubich, and C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comp., 75 (2006), pp. 673--696.
[5]
E. Cuesta and C. Palencia, A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces, Appl. Numer. Math., 45 (2003), pp. 139--159.
[6]
V. Daftardar-Gejji, Y. Sukale, and S. Bhalekar, A new predictor-corrector method for fractional differential equations, Appl. Math. Comput., 244 (2014), pp. 158--182.
[7]
W. Deng, Short memory principle and a predictor-corrector approach for fractional differential equations, J. Comput. Appl. Math., 206 (2007), pp. 174--188.
[8]
K. Diethelm, J. M. Ford, N. J. Ford, and M. Weilbeer, Pitfalls in fast numerical solvers for fractional differential equations, J. Comput. Appl. Math., 186 (2006), pp. 482--503.
[9]
K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), pp. 229--248.
[10]
K. Diethelm, N. J. Ford, and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), pp. 3--22.
[11]
K. Diethelm, N. J. Ford, and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), pp. 31--52.
[12]
G. Dimarco and L. Pareschi, Asymptotic preserving implicit-explicit Runge--Kutta methods for nonlinear kinetic equations, SIAM J. Numer. Anal., 51 (2013), pp. 1064--1087.
[13]
J. Dixon, On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with nonsmooth solutions, BIT, 25 (1985), pp. 624--634.
[14]
N. J. Ford, M. L. Morgado, and M. Rebelo, Nonpolynomial collocation approximation of solutions to fractional differential equations, Fract. Calc. Appl. Anal., 16 (2013), pp. 874--891.
[15]
L. Galeone and R. Garrappa, Fractional Adams-Moulton methods, Math. Comput. Simulation, 79 (2008), pp. 1358--1367.
[16]
G.-H. Gao, Z.-Z. Sun, And H.-W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014), pp. 33--50.
[17]
R. Garrappa, On linear stability of predictor-corrector algorithms for fractional differential equations, Int. J. Comput. Math., 87 (2010), pp. 2281--2290.
[18]
R. Garrappa, Trapezoidal methods for fractional differential equations: Theoretical and computational aspects, Math. Comput. Simulation, 110 (2015), pp. 96--112.
[19]
H. R. Ghazizadeh, M. Maerefat, and A. Azimi, Explicit and implicit finite difference schemes for fractional Cattaneo equation, J. Comput. Phys., 229 (2010), pp. 7042--7057.
[20]
Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resour. Res., 34 (1998), pp. 1027--1033, ŭldoi:10.1029/98WR00214.
[21]
Y. He, Euler implicit/explicit iterative scheme for the stationary Navier--Stokes equations, Numer. Math., 123 (2012), pp. 67--96.
[22]
B. Jin, R. Lazarov, J. Pasciak, and Z. Zhou, Error analysis of a finite element method for the space-fractional parabolic equation, SIAM J. Numer. Anal., 52 (2014), pp. 2272--2294, ŭldoi:10.1137/13093933X.
[23]
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science B.V., Amsterdam, 2006.
[24]
O. M. Knio, H. N. Najm, and P. S. Wyckoff, A semi-implicit numerical scheme for reacting flow: II. Stiff, operator-split formulation, J. Comput. Phys., 154 (1999), pp. 428--467.
[25]
C. Li, A. Chen, and J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys., 230 (2011), pp. 3352--3368.
[26]
X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), pp. 2108--2131.
[27]
Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), pp. 1533--1552.
[28]
F. Liu, P. Zhuang, I. Turner, V. Anh, and K. Burrage, A semi-alternating direction method for a $2$-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain, J. Comput. Phys., 293 (2015), pp. 252--263.
[29]
Ch. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. Comp., 45 (1985), pp. 463--469.
[30]
Ch. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17 (1986), pp. 704--719, ŭldoi:10.1137/0517050.
[31]
Ch. Lubich, A stability analysis of convolution quadratures for Abel-Volterra integral equations, IMA J. Numer. Anal., 6 (1986), pp. 87--101.
[32]
J. Pan, R. Ke, M. K. Ng, and H.-W. Sun, Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations, SIAM J. Sci. Comput., 36 (2014), pp. A2698--A2719, ŭldoi:10.1137/130931795.
[33]
P. Perdikaris and G. E. Karniadakis, Fractional-order viscoelasticity in one-dimensional blood flow models, Ann. Biomed. Eng., 42 (2014), pp. 1012--1023.
[34]
I. Podlubny, Fractional Differential Equations, Math. Sci. Engrg. 198, Academic Press, San Diego, 1999.
[35]
I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen, and B. M. Vinagre Jara, Matrix approach to discrete fractional calculus. II. Partial fractional differential equations, J. Comput. Phys., 228 (2009), pp. 3137--3153.
[36]
Z.-z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), pp. 193--209.
[37]
T. Tang, A finite difference scheme for partial integro-differential equations with a weakly singular kernel, Appl. Numer. Math., 11 (1993), pp. 309--319.
[38]
W. Tian, H. Zhou, and W. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comp., 84 (2015), pp. 1703--1727.
[39]
W. Y. Tian, W. Deng, and Y. Wu, Polynomial spectral collocation method for space fractional advection-diffusion equation, Numer. Methods Partial Differential Equations, 30 (2014), pp. 514--535.
[40]
H. Wang and D. Yang, Wellposedness of variable-coefficient conservative fractional elliptic differential equations, SIAM J. Numer. Anal., 51 (2013), pp. 1088--1107.
[41]
W. Wang, X. Chen, D. Ding, and S.-L. Lei, Circulant preconditioning technique for barrier options pricing under fractional diffusion models, Int. J. Comput. Math., 92 (2015), pp. 2596--2614.
[42]
C. Yang and F. Liu, A computationally effective predictor-corrector method for simulating fractional order dynamical control system, ANZIAM J., 47 (2006), pp. C168--C184.
[43]
Z. Yang, A class of linearized energy-conserved finite difference schemes for nonlinear space-fractional Schrödinger equations, Int. J. Comput. Math., 93 (2016), pp. 609--626.
[44]
S. B. Yuste and Q.-M. Joaquín, A finite difference method with non-uniform timesteps for fractional diffusion equations, Comput. Phys. Commun., 183 (2012), pp. 2594--2600.
[45]
M. Zayernouri and G. E. Karniadakis, Discontinuous spectral element methods for time- and space-fractional advection equations, SIAM J. Sci. Comput., 36 (2014), pp. B684--B707.
[46]
F. Zeng, Second-order stable finite difference schemes for the time-fractional diffusion-wave equation, J. Sci. Comput., 65 (2015), pp. 411--430.
[47]
F. Zeng, C. Li, and F. Liu, High-order explicit-implicit numerical methods for nonlinear anomalous diffusion equations, Eur. Phys. J. Special Topics, 222 (2013), pp. 1885--1900.
[48]
F. Zeng, C. Li, F. Liu, and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35 (2013), pp. A2976--A3000.
[49]
F. Zeng, C. Li, F. Liu, and I. Turner, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput., 37 (2015), pp. A55--A78, ŭldoi:10.1137/14096390X.
[50]
F. Zeng, Z. Zhang, and G. E. Karniadakis, Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions, SIAM J. Numer. Anal, submitted, 2016.
[51]
Y.-N. Zhang, Z.-Z. Sun, And H.-L. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys., 265 (2014), pp. 195--210.
[52]
Z. Zhang, F. Zeng, and G. E. Karniadakis, Optimal error estimates of spectral Petrov--Galerkin and collocation methods for initial value problems of fractional differential equations, SIAM J. Numer. Anal., 53 (2015), pp. 2074--2096.
[53]
L. Zhao and W. Deng, Jacobian-predictor-corrector approach for fractional differential equations, Adv. Comput. Math., 40 (2014), pp. 137--165.
[54]
H. Zhou, W. Tian, and W. Deng, Quasi-compact finite difference schemes for space fractional diffusion equations, J. Sci. Comput., 56 (2013), pp. 45--66.

Cited By

View all
  • (2023)A fractional Adams–Simpson-type method for nonlinear fractional ordinary differential equations with non-smooth dataBIT10.1007/s10543-023-00952-463:1Online publication date: 30-Jan-2023
  • (2022)Efficient high-order exponential time differencing methods for nonlinear fractional differential modelsNumerical Algorithms10.1007/s11075-022-01339-292:2(1261-1288)Online publication date: 27-Jul-2022
  • (2022)An Effective Finite Element Method with Shifted Fractional Powers Bases for Fractional Boundary Value ProblemsJournal of Scientific Computing10.1007/s10915-022-01854-392:1Online publication date: 1-Jul-2022

Index Terms

  1. Implicit-Explicit Difference Schemes for Nonlinear Fractional Differential Equations with Nonsmooth Solutions
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image SIAM Journal on Scientific Computing
          SIAM Journal on Scientific Computing  Volume 38, Issue 5
          Special Section on Two Themes: CSE Software and Big Data in CSE
          2016
          1789 pages
          ISSN:1064-8275
          DOI:10.1137/sjoce3.38.5
          Issue’s Table of Contents

          Publisher

          Society for Industrial and Applied Mathematics

          United States

          Publication History

          Published: 01 January 2016

          Author Tags

          1. time-fractional derivatives
          2. IMEX schemes
          3. low regularity
          4. multirate systems
          5. multiterm fractional derivatives

          Author Tags

          1. 34A08
          2. 35R11
          3. 65L04
          4. 65L05
          5. 65L20
          6. 65L70

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 03 Jan 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2023)A fractional Adams–Simpson-type method for nonlinear fractional ordinary differential equations with non-smooth dataBIT10.1007/s10543-023-00952-463:1Online publication date: 30-Jan-2023
          • (2022)Efficient high-order exponential time differencing methods for nonlinear fractional differential modelsNumerical Algorithms10.1007/s11075-022-01339-292:2(1261-1288)Online publication date: 27-Jul-2022
          • (2022)An Effective Finite Element Method with Shifted Fractional Powers Bases for Fractional Boundary Value ProblemsJournal of Scientific Computing10.1007/s10915-022-01854-392:1Online publication date: 1-Jul-2022

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media