[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

On Lifting Operators and Regularity of Nonsmooth Newton Methods for Optimal Control Problems of Differential Algebraic Equations

Published: 01 February 2019 Publication History

Abstract

This paper focuses on nonsmooth Newton methods of optimal control problems governed by mixed control---state constraints with differential algebraic equations. In contrast to previous results, we analyze lifting operators involved in nonsmooth Newton methods and establish corresponding convergence results. We also give sufficient conditions for regularity of generalized derivatives of systems of nonsmooth operator equations associated with optimal control problems.

References

[1]
Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. MOS/SIAM Series on Optimization, vol. 10. SIAM, Philadelphia (2010)
[2]
Dontchev, A.L., Hager, W.W., Malanowski, K.: Error bounds for Euler approximation of a state and control constrained optimal control problem. Numer. Funct. Anal. Optim. 21, 653---682 (2000)
[3]
Dontchev, A.L., Hager, W.W., Veliov, V.M.: Second-order Runge-Kutta approximations in control constrained optimal control. SIAM J. Numer. Anal. 38, 202---226 (2000)
[4]
Hager, W.W.: Runge-Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247---282 (2000)
[5]
Leineweber, D.B., Bock, H.G., Schlöder, J.P., Gallitzendörfer, J.V., Schäfer, A., Jansohn, P.: A Boundary Value Problem Approach to the Optimization of Chemical Processes Described by DAE Models. University of Heidelberg, Technical Report, Interdisciplinary Center for Scientific Computing (1997)
[6]
Malanowski, K., Büskens, C., Maurer, H.: Convergence of Approximations to Nonlinear Optimal Control Problems, Mathematical Programming with Data Perturbations, Lecture Notes in Pure and Appl. Math., Dekker, New York, vol. 195, pp. 253---284 (1998)
[7]
Gerdts, M.: Optimal control of ODEs and DAEs de Gruyter Textbook. Walter de Gruyter & Co., Berlin (2012)
[8]
Büskens, C.: Optimierungsmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuer- und Zustandsbeschränkungen, PhD thesis, Westfälische Wilhems-Universität Münster (1998)
[9]
Grötschel, M., Krumke, S.O., Rambau, J.: Online Optimization of Large Scale Systems. Springer, Berlin (2001)
[10]
Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems, Studies in Mathematics and its Applications, 6. North-Holland Publishing Co., Amsterdam, New York (1979)
[11]
Gerdts, M.: Direct shooting method for the numerical solution of higher index DAE optimal control problems. J. Optim. Theory Appl. 117, 267---294 (2003)
[12]
Hartl, R.F., Sethi, S.P., Vickson, G.: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37, 181---218 (1995)
[13]
Oberle, H.J., Grimm, W.: Bndsco--A Program for the Numerical Solution of Optimal Control Problems. Institute for Flight Systems Dynamics, DLR, Oberpfaffenhofen, Internal Report 515-89/22 (1989)
[14]
Pesch, H.J.: A practical guide to the solution of real-life optimal control problems. Control Cybern. 23, 7---60 (1995)
[15]
Chen, J., Gerdts, M.: Numerical solution of control-state constrained optimal control problems with an inexact smoothing Newton method. IMA J. Numer. Anal. 31, 1598---1624 (2011)
[16]
Chen, J., Gerdts, M.: Smoothing techniques of nonsmooth Newton methods for control-state constrained optimal control problems. SIAM J. Numer. Anal. 50, 1982---2011 (2012)
[17]
Kanzow, C., Pieper, H.: Jacobian smoothing methods for nonlinear complementarity problems. SIAM J. Optim. 9, 342---372 (1999)
[18]
Qi, L., Sun, D.: Smoothing functions and a smoothing Newton method for complementarity and variational inequality problems. J. Optim. Theory Appl. 113, 121---147 (2002)
[19]
Chen, B., Harker, P.T.: A non-interior-point continuation method for linear complementarity problem. SIAM J. Matrix Anal. Appl. 14, 1168---1190 (1993)
[20]
Chen, J., Qi, L.: Globally and superlinearly convergent inexact Newton---Krylov algorithms for solving nonsmooth equations. Numer. Linear Algebra Appl. 17, 155---174 (2010)
[21]
Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38, 1200---1216 (2000)
[22]
Chen, X., Qi, L., Sun, D.: Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities. Math. Comput. 67, 519---540 (1998)
[23]
Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)
[24]
Qi, L., Sun, D., Zhou, G.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math. Program. 87, 1---35 (2000)
[25]
Ulbrich, M.: Semismooth newton methods for operator equations in function spaces. SIAM J. Optim. 13, 805---841 (2003)
[26]
Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, vol. 11. SIAM, Philadelphia (2011)
[27]
Tröltzsch, F.: Regular Lagrange multipliers for control problems with mixed pointwise control state constraints. SIAM J. Optim. 15, 616---634 (2005)
[28]
Alt, W., Malanowski, K.: The Lagrange---Newton method for nonlinear optimal control problems. Comput. Optim. Appl. 2, 77---100 (1993)
[29]
Malanowski, K.: On normality of Lagrange multipliers for state constrained optimal control problems. Optimization 52, 75---91 (2003)
[30]
Zeidan, V.: The Riccati equation for optimal control problems with mixed state-control constraints: necessity and sufficiency. SIAM J. Control Optim. 32, 1297---1321 (1994)
[31]
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
[32]
Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865---888 (2003)
[33]
Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications, Advances in Design and Control, 15. SIAM, Philadelphia (2008)
[34]
Gerdts, M.: Global convergence of a nonsmooth Newton method for control-state constrained optimal control problems, SIAM J. Optim. 19, 326---350 (2008), Erratum 21, 615---616 (2011)
[35]
Gerdts, M., Kunkel, M.: A globally convergent semi-smooth Newton method for control-state constrained DAE optimal control problems. Comput. Optim. Appl. 48, 601---633 (2011)
[36]
Malanowski, K., Maurer, H.: Sensitivity analysis for parametric control problems with control-state constraints. Comput. Optim. Appl. 5, 253---283 (1996)
[37]
Maurer, H., Pickenhain, S.: Second-order sufficient conditions for control problems with mixed control-state constraints. J. Optim. Theory Appl. 86, 649---667 (1995)
  1. On Lifting Operators and Regularity of Nonsmooth Newton Methods for Optimal Control Problems of Differential Algebraic Equations

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Journal of Optimization Theory and Applications
        Journal of Optimization Theory and Applications  Volume 180, Issue 2
        February 2019
        341 pages

        Publisher

        Plenum Press

        United States

        Publication History

        Published: 01 February 2019

        Author Tags

        1. 49J15
        2. 49J52
        3. 49M15
        4. Convergence
        5. Lifting operators
        6. Nonsmooth Newton methods
        7. Optimal control of DAEs
        8. Regularity conditions

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 26 Dec 2024

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media