[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

A globally convergent semi-smooth Newton method for control-state constrained DAE optimal control problems

Published: 01 April 2011 Publication History

Abstract

We investigate a semi-smooth Newton method for the numerical solution of optimal control problems subject to differential-algebraic equations (DAEs) and mixed control-state constraints. The necessary conditions are stated in terms of a local minimum principle. By use of the Fischer-Burmeister function the local minimum principle is transformed into an equivalent nonlinear and semi-smooth equation in appropriate Banach spaces. This nonlinear and semi-smooth equation is solved by a semi-smooth Newton method. We extend known local and global convergence results for ODE optimal control problems to the DAE optimal control problems under consideration. Special emphasis is laid on the calculation of Newton steps which are given by a linear DAE boundary value problem. Regularity conditions which ensure the existence of solutions are provided. A regularization strategy for inconsistent boundary value problems is suggested. Numerical illustrations for the optimal control of a pendulum and for the optimal control of discretized Navier-Stokes equations conclude the article.

References

[1]
Backes, A.: Extremalbedingungen für Optimierungs-Probleme mit Algebro-Differentialgleichungen. PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät, Humboldt-Universität Berlin, Berlin, Germany (2006).
[2]
Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Classics in Applied Mathematics, vol. 14. SIAM, Philadelphia (1996).
[3]
Chen, J., Gerdts, M.: Numerical solution of control-state constrained optimal control problems with inexact nonsmooth and smoothing Newton methods (2008, submitted).
[4]
Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38, 1200-1216 (2000).
[5]
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983).
[6]
Fischer, A.: A special Newton-type optimization method. Optimization 24, 269-284 (1992).
[7]
Fischer, A.: Solution of monotone complementarity problems with locally Lipschitzian functions. Math. Program. 76, 513-532 (1997).
[8]
Gear, C.W., Leimkuhler, B., Gupta, G.K.: Automatic integration of Euler-Lagrange equations with constraints. J. Comput. Appl. Math. 12(13), 77-90 (1985).
[9]
Gerdts, M.: Local minimum principle for optimal control problems subject to index-two differential-algebraic equations. J. Optim. Theory Appl. 130, 443-462 (2006).
[10]
Gerdts, M.: Representation of the Lagrange multipliers for optimal control problems subject to differential-algebraic equations of index two. J. Optim. Theory Appl. 130, 231-251 (2006).
[11]
Gerdts, M.: Direct shooting method for the numerical solution of higher index DAE optimal control problems. J. Optim. Theory Appl. 117, 267-294 (2003).
[12]
Gerdts, M.: Global convergence of a nonsmooth Newton method for control-state constrained optimal control problems. SIAM J. Optim. 19, 326-350 (2008).
[13]
Gritsis, D.M., Pantelides, C.C., Sargent, R.W.H.: Optimal control of systems described by index two differential-algebraic equations. SIAM J. Sci. Comput. 16, 1349-1366 (1995).
[14]
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1996).
[15]
Hermes, H., Lasalle, J.P.: Functional Analysis and Time Optimal Control. Mathematics in Science and Engineering, vol. 56. Academic Press, New York (1969).
[16]
Jiang, H.: Global convergence analysis of the generalized Newton and Gauss-Newton methods of the Fischer-Burmeister equation for the complementarity problem. Math. Oper. Res. 24, 529-543 (1999).
[17]
Kummer, B.: Newton's method for non-differentiable functions. In: Guddat, J., et al. (eds.) Advances in Mathematical Optimization, pp. 171-194. Akademie-Verlag, Berlin (1988).
[18]
Kummer, B.: Newton's method based on generalized derivatives for nonsmooth functions: convergence analysis. In: Oettli, W., Pallaschke, D. (eds.) Advances in Optimization, pp. 171-194. Springer, Berlin (1991).
[19]
Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solution. European Mathematical Society Publishing House, Zurich (2006).
[20]
Kunkel, P., Stöver, R.: Symmetric collocation methods for linear differential-algebraic boundary value problems. Numer. Math. 91, 475-501 (2002).
[21]
Pantelides, C.C., Sargent, R.W.H., Vassiliadis, V.S.: Optimal control of multistage systems described by high-index differential-algebraic equations. In: Bulirsch, R. (ed.) Computational Optimal Control. International Series of Numerical Mathematics, vol. 115, pp. 177-191. Birkhäuser, Basel (1994).
[22]
Petzold, L.R.: Differential/algebraic equations are not ODE's. SIAM J. Sci. Stat. Comput. 3, 367-384 (1982).
[23]
Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227-244 (1993).
[24]
Qi, L., Sun, J.: A nonsmooth version of Newton's method. Math. Program. 58, 353-367 (1993).
[25]
Roubicek, T., Valásek, M.: Optimal control of causal differential-algebraic systems. J. Math. Anal. Appl. 269, 616-641 (2002).
[26]
Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. J. Future Gener. Comput. Syst. 20, 475-487 (2002).
[27]
Schenk, O., Gärtner, K.: On fast factorization pivoting methods for sparse symmetric indefinite systems. ETNA Electron. Trans. Numer. Anal. 23, 158-179 (2006).
[28]
Schulz, V.H., Bock, H.G., Steinbach, M.C.: Exploiting invariants in the numerical solution of multipoint boundary value problems for DAE. SIAM J. Sci. Comput. 19, 440-467 (1998).
[29]
Ulbrich, M.: Nonsmooth Newton-like methods for variational inequalities and constrained optimization problems in function spaces. Habilitation, Technical University of Munich, Munich (2002).
[30]
Ulbrich, M.: Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13, 805-841 (2003).

Cited By

View all
  • (2019)On Lifting Operators and Regularity of Nonsmooth Newton Methods for Optimal Control Problems of Differential Algebraic EquationsJournal of Optimization Theory and Applications10.1007/s10957-018-1364-8180:2(518-535)Online publication date: 1-Feb-2019
  • (2019)Nonsmooth Newton’s Method: Some Structure ExploitationComputational Science – ICCS 201910.1007/978-3-030-22744-9_32(409-420)Online publication date: 12-Jun-2019

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computational Optimization and Applications
Computational Optimization and Applications  Volume 48, Issue 3
April 2011
316 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 April 2011

Author Tags

  1. Control-state constraints
  2. Differential-algebraic equations
  3. Global convergence
  4. Optimal control
  5. Semi-smooth Newton method

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2019)On Lifting Operators and Regularity of Nonsmooth Newton Methods for Optimal Control Problems of Differential Algebraic EquationsJournal of Optimization Theory and Applications10.1007/s10957-018-1364-8180:2(518-535)Online publication date: 1-Feb-2019
  • (2019)Nonsmooth Newton’s Method: Some Structure ExploitationComputational Science – ICCS 201910.1007/978-3-030-22744-9_32(409-420)Online publication date: 12-Jun-2019

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media