[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Newton Differentiability of Convex Functions in Normed Spaces and of a Class of Operators

Published: 01 January 2022 Publication History

Abstract

Newton differentiability is an important concept for analyzing generalized Newton methods for nonsmooth equations. In this work, for a convex function defined on an infinite-dimensional space, we discuss the relation between Newton and Bouligand differentiability and upper semicontinuity of its subdifferential. We also construct a Newton derivative of an operator of the form $(Fx)(p) = f(x,p)$ for general nonlinear operators $f$ that possess a Newton derivative with respect to $x$ and also for the case where $f$ is convex in $x$.

References

[1]
J. Bergh and J. Löfström, Interpolation Theory. An Introduction, Springer, Berlin, 1976.
[2]
J. Bolte, A. Daniilidis, and A. Lewis, Tame functions are semismooth, Math. Program., 117 (2009), pp. 5--19.
[3]
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000.
[4]
M. Brokate, Newton and Bouligand derivatives of the scalar play and stop operator, Math. Model. Nat. Phenom., 15 (2020), 51.
[5]
X. Chen, Z. Nashed, and L. Qi, Smoothing methods and semismooth methods for nondifferentiable operator equations, SIAM J. Numer. Anal., 38 (2000), pp. 1200--1216.
[6]
Z. Denkowski, S. Migórski, and N. S. Papageorgiou, An Introduction to Nonlinear Analysis, Springer, New York, 2003.
[7]
C. Ding, D. Sun, J. Sun, and K.-C. Toh, Spectral operators of matrices: Semismoothness and characterizations of the generalized Jacobian, SIAM J. Optim., 30 (2020), pp. 630--659.
[8]
I. Ekeland and R. Temam, Convex Analysis and Variational Problems, American Elsevier, New York, 1976.
[9]
F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Ser. Oper. Res. Finac. Eng. 1 and 2, Springer, New York, 2003.
[10]
D. A. Gregory, Upper semi-continuity of subdifferential mappings, Canad. Math. Bull., 23 (1980), pp. 11--19.
[11]
M. Hintermüller, K. Ito, and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim., 13 (2003), pp. 865--888.
[12]
M. Hintermüller and K. Kunisch, PDE-constrained optimization subject to pointwise constraints on the control, the state, and Its derivatives, SIAM J. Optim., 20 (2009), pp. 1133--1156.
[13]
R. B. Holmes, Geometric Functional Analysis and Its Applications, Springer, New York, 1975.
[14]
S. Hu and N. S. Papageorgiu, Handbook of Multivalued Analysis, Volume I: Theory, Springer, Dordrecht, 1997.
[15]
K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, SIAM Ser. Adv. Design Control, SIAM, Philadelphia, 2008.
[16]
J. L. Kelley, General Topology, Springer, New York, 1975.
[17]
D. Klatte and B. Kummer, Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications, Springer, Boston, 2002.
[18]
D. Klatte and B. Kummer, Corrections to: Approximations and generalized Newton methods, Math. Program. Ser. A, 179 (2020), pp. 469--471.
[19]
B. Kummer, Newton's method for nondifferentiable functions, in Advances in Mathematical Optimization, Math. Res. 45, Akademie-Verlag, Berlin, 1988, pp. 114--125.
[20]
B. Kummer, Newton's method based on generalized derivatives for nonsmooth functions: Convergence analysis, in Advances in Optimization, Lecture Notes in Econom. and Math. Systems 382, Springer, Berlin, 1992, pp. 171--194.
[21]
K. Kruse, Semismooth implicit functions, J. Convex Anal., 25 (2018), pp. 595--622.
[22]
A. Lunardi, Interpolation Theory, 3rd ed., Edizioni della Normale, Pisa, Italy, 2018.
[23]
J. Outrata, M. Kočvara, and J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, Springer, Dordrecht, 1998.
[24]
J. S. Pang and L. Qi, Nonsmooth equations: Motivation and algorithms, SIAM J. Optim., 3 (1993), pp. 443--465.
[25]
N. S. Papageorgiu and S. T. Kyritsi-Yiallourou, Handbook of Applied Analysis, Springer, Boston, 2009.
[26]
R. R. Phelps, Convex Functions, Monotone Operators, and Differentiability, Springer, Berlin, 1993.
[27]
L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper. Res., 18 (1993), pp. 227--244.
[28]
L. Qi and J. Sun, A nonsmooth version of Newton's method, Math. Program., 58 (1993), pp. 353--367.
[29]
H. Qi and X. Yang, Semismoothness of spectral functions, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 766--783.
[30]
A. Schiela, A simplified approach to semismooth Newton methods in function space, SIAM J. Optim., 19 (2008), pp. 1417--1432.
[31]
I. Smears and E. Süli, Discontinuous Galerkin finite element approximation of Hamilton--Jacobi--Bellman equations with Cordes coefficients, SIAM J. Numer. Anal., 52 (2014), pp. 993--1016.
[32]
D. Sun and J. Sun, Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems, SIAM J. Numer. Anal., 40 (2003), pp. 2352--2367.
[33]
M. Ulbrich, Semismooth Newton methods for operator equations in function spaces, SIAM J. Optim., 13 (2003), pp. 805--841.
[34]
M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, SIAM, Philadelphia, 2011.

Index Terms

  1. Newton Differentiability of Convex Functions in Normed Spaces and of a Class of Operators
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image SIAM Journal on Optimization
        SIAM Journal on Optimization  Volume 32, Issue 2
        DOI:10.1137/sjope8.32.2
        Issue’s Table of Contents

        Publisher

        Society for Industrial and Applied Mathematics

        United States

        Publication History

        Published: 01 January 2022

        Author Tags

        1. convex
        2. subdifferential
        3. semismooth
        4. Newton derivative
        5. Bouligand derivative
        6. maximum functional
        7. measurable selector

        Author Tags

        1. 49J52
        2. 46G05
        3. 47H04
        4. 49M15

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 30 Dec 2024

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media