[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Deciding Effectively Propositional Logic Using DPLL and Substitution Sets

Published: 01 April 2010 Publication History

Abstract

We introduce a DPLL calculus that is a decision procedure for the Bernays-Schönfinkel class, also known as EPR. Our calculus allows combining techniques for efficient propositional search with data-structures, such as Binary Decision Diagrams, that can efficiently and succinctly encode finite sets of substitutions and operations on these. In the calculus, clauses comprise of a sequence of literals together with a finite set of substitutions; truth assignments are also represented using substitution sets. The calculus works directly at the level of sets, and admits performing simultaneous constraint propagation and decisions, resulting in potentially exponential speedups over existing approaches.

References

[1]
Andersen, H.R., Hulgaard, H.: Boolean expression diagrams. Inf. Comput. 179(2), 194-212 (2002).
[2]
Baumgartner, P.: Logical engineering with instance-based methods. In: Pfenning, F. (ed.) Automated Deduction--CADE-21, 21st International Conference on Automated Deduction, Bremen, Germany, 17-20 July, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4603, pp. 404-409. Springer (2007).
[3]
Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. Int. J. Artif. Intell. Tools 15(1), 21-52 (2006).
[4]
Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR. Lecture Notes in Computer Science, vol. 4246, pp. 572-586. Springer, New York (2006).
[5]
Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL method. Artif. Intell. 172(4-5), 591-632 (2008).
[6]
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C-35(8), 677-691 (1986).
[7]
Claessen, K., Sörensson, N.: New techniques that improve mace-style finite model finding. In: CADE-19 Workshop: Model Computation--Principles, Algorithms, Applications (2003).
[8]
de Moura, L., Bjørner, N.: Deciding effectively propositional logic using DPLL and substitution sets. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008 (2008).
[9]
de Nivelle, H., Meng, J.: Geometric resolution: a proof procedure based on finite model search. In: Furbach, U., Shankar, N. (eds.) IJCAR. Lecture Notes in Computer Science, vol. 4130, pp. 303-317. Springer, New York (2006).
[10]
Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: Bacchus, F., Walsh, T. (eds.) SAT. Lecture Notes in Computer Science, vol. 3569, pp. 408-414. Springer, New York (2005).
[11]
Eén, N., Sörensson, N.: An extensible sat-solver. In: Proceedings of the Sixth International Conference on Theory and Applications of Satisfiability Testing (SAT), pp. 502-518 (2003).
[12]
Fermüller, C.G., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1791-1849. Elsevier and MIT, Amsterdam (2001).
[13]
Gallo, G., Rago, G.: The satisfiability problem for the Schönfinkel-Bernays fragment: partial instantiation and hypergraph algorithms. Technical report 4/94, Dip. Informatica, Universit'a di Pisa (1994).
[14]
Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: LICS, pp. 55-64. IEEE Computer Society, Los Alamitos (2003).
[15]
Krstic, S., Goel, A.: Architecting solvers for SAT modulo theories: Nelson-Oppen with DPLL. In: Konev, B., Wolter, F. (eds.) FroCos. Lecture Notes in Computer Science, vol. 4720, pp. 1-27. Springer, New York (2007).
[16]
Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21(3), 317-353 (1980).
[17]
Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937-977 (2006).
[18]
Pérez, J.A.N., Voronkov, A.: Encodings of bounded LTL model checking in effectively propositional logic. In: Pfenning, F. (ed.) Automated Deduction--CADE-21, 21st International Conference on Automated Deduction, Bremen, Germany, 17-20 July, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4603, pp. 346-361. Springer, New York (2007).
[19]
Pérez, J.A.N., Voronkov, A.: Proof systems for effectively propositional logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008 (2008).
[20]
Piskac, R., de Moura, L., Bjørner, N.: Deciding effectively propositional logic with equality. Technical report MSR-2008-161, Microsoft Research (2008).
[21]
Tammet, T., Kadarpik, V.: Combining an inference engine with database: a rule server. In: Schroeder, M., Wagner, G. (eds.) RuleML. Lecture Notes in Computer Science, vol. 2876, pp. 136-149. Springer, New York (2003).
[22]
Voronkov, A.: Merging relational database technology with constraint technology. In: Bjørner, D., Broy, M., Pottosin, I.V. (eds.) Ershov Memorial Conference. Lecture Notes in Computer Science, vol. 1181, pp. 409-419. Springer, New York (1996).
[23]
Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using datalog with binary decision diagrams for program analysis. In: Yi, K. (ed.) APLAS. Lecture Notes in Computer Science, vol. 3780, pp. 97-118. Springer, New York (2005).

Cited By

View all
  • (2024)Verus: A Practical Foundation for Systems VerificationProceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles10.1145/3694715.3695952(438-454)Online publication date: 4-Nov-2024
  • (2024)Compositional Verification of Composite Byzantine ProtocolsProceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security10.1145/3658644.3690355(34-48)Online publication date: 2-Dec-2024
  • (2024)Orthologic with AxiomsProceedings of the ACM on Programming Languages10.1145/36328818:POPL(1150-1178)Online publication date: 5-Jan-2024
  • Show More Cited By
  1. Deciding Effectively Propositional Logic Using DPLL and Substitution Sets

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of Automated Reasoning
    Journal of Automated Reasoning  Volume 44, Issue 4
    April 2010
    120 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 April 2010

    Author Tags

    1. BDDs
    2. DPLL
    3. Effectively propositional logic
    4. SAT

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Verus: A Practical Foundation for Systems VerificationProceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles10.1145/3694715.3695952(438-454)Online publication date: 4-Nov-2024
    • (2024)Compositional Verification of Composite Byzantine ProtocolsProceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security10.1145/3658644.3690355(34-48)Online publication date: 2-Dec-2024
    • (2024)Orthologic with AxiomsProceedings of the ACM on Programming Languages10.1145/36328818:POPL(1150-1178)Online publication date: 5-Jan-2024
    • (2024)mypyvy: A Research Platform for Verification of Transition Systems in First-Order LogicComputer Aided Verification10.1007/978-3-031-65630-9_4(71-85)Online publication date: 24-Jul-2024
    • (2024)On the Verification of the Correctness of a Subgraph Construction AlgorithmVerification, Model Checking, and Abstract Interpretation10.1007/978-3-031-50524-9_14(303-325)Online publication date: 15-Jan-2024
    • (2022)Formal verification of a distributed dynamic reconfiguration protocolProceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs10.1145/3497775.3503688(143-152)Online publication date: 17-Jan-2022
    • (2022)Feferman–Vaught Decompositions for Prefix Classes of First Order LogicJournal of Logic, Language and Information10.1007/s10849-022-09384-932:1(147-174)Online publication date: 12-Nov-2022
    • (2021)QuickSilver: modeling and parameterized verification for distributed agreement-based systemsProceedings of the ACM on Programming Languages10.1145/34855345:OOPSLA(1-31)Online publication date: 15-Oct-2021
    • (2021)A multiparty session typing discipline for fault-tolerant event-driven distributed programmingProceedings of the ACM on Programming Languages10.1145/34855015:OOPSLA(1-30)Online publication date: 15-Oct-2021
    • (2021)Decidable First-Order Fragments of Linear Rational Arithmetic with Uninterpreted PredicatesJournal of Automated Reasoning10.1007/s10817-020-09567-865:3(357-423)Online publication date: 1-Mar-2021
    • Show More Cited By

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media