A New Wavelet-Based Privatization Mechanism for Probability Distributions
<p>Plots of: (<b>a</b>) a wavelet perturbation to be applied to the <math display="inline"><semantics> <mrow> <mi mathvariant="script">U</mi> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math> distribution; and (<b>b</b>) wavelet perturbation (— blue), uniform (- - red), and perturbed uniform (- · - orange) CDFs.</p> "> Figure 2
<p>Plots of the beta wavelet perturbations: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>ψ</mi> <mi>beta</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>; and (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>ψ</mi> <mi>beta</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 3
<p>Plots of: (<b>a</b>) beta wavelet perturbations to be applied to the <math display="inline"><semantics> <mrow> <mi mathvariant="script">U</mi> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math> distribution; and (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>ψ</mi> <mi>beta</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> perturbed uniform (⋯ blue), <math display="inline"><semantics> <mrow> <msub> <mi>ψ</mi> <mi>beta</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> perturbed uniform (- · - blue), and uniform (— red) CDFs.</p> "> Figure 4
<p>Plots of: (<b>a</b>) a DB4 wavelet perturbation to be applied to the <math display="inline"><semantics> <mrow> <mi mathvariant="script">U</mi> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math> distribution; and (<b>b</b>) DB4 wavelet perturbation (— blue) and uniform (- · - red) CDFs.</p> "> Figure 5
<p>Plots of: (<b>a</b>) a Mexican-hat wavelet perturbation to be applied to the <math display="inline"><semantics> <mrow> <mi mathvariant="script">U</mi> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math> distribution; and (<b>b</b>) Mexican-hat wavelet perturbation (— blue) and uniform (- · - red) CDFs.</p> "> Figure 6
<p>Plots of: (<b>a</b>) a level-2 beta wavelet perturbation to be applied to the <math display="inline"><semantics> <mrow> <mi mathvariant="script">U</mi> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math> distribution; and (<b>b</b>) level-2 beta wavelet perturbation (— blue) and uniform (- · - red) CDFs.</p> "> Figure 7
<p>Plots of: (<b>a</b>) PDF and CDF of the triangular distribution; and (<b>b</b>) wavelet perturbation (— blue), triangular (- - red), and perturbed triangular (- · - orange) CDFs.</p> ">
Abstract
:1. Introduction
2. Background and Wavelet Approach
- (C1)
- ;
- (C2)
- is derivable and satisfies , where denotes the PDF related to the CDF .
3. Choosing a Perturbation for an Arbitrary Probability Distribution
4. Moments Correction Due to the Perturbation
5. Generalizing the Perturbation Approach at Further Levels
- First quartile driven by .
- Second quartile driven by .
- Third quartile driven by .
- Fourth quartile driven by .
6. Empirical Application
Algorithm 1 Approach to perturb a probability distribution with a database-sensor. |
|
Algorithm 2 Approach to perturb a probability distribution by levels. |
|
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nor, A.K.M.; Pedapati, S.R.; Muhammad, M.; Leiva, V. Overview of explainable artificial intelligence for prognostic and health management of industrial assets based on preferred reporting items for systematic reviews and meta-analyses. Sensors 2021, 21, 8020. [Google Scholar] [CrossRef] [PubMed]
- Aykroyd, R.G.; Leiva, V.; Ruggeri, F. Recent developments of control charts, identification of big data sources and future trends of current research. Technol. Forecast. Soc. Change 2019, 144, 221–232. [Google Scholar] [CrossRef]
- Gomez-Deniz, E.; Leiva, V.; Calderin-Ojeda, E.; Chesneau, C. A novel claim size distribution based on a Birnbaum-Saunders and gamma mixture capturing extreme values in insurance: Estimation, regression, and applications. Comput. Appl. Math. 2022, 41, 171. [Google Scholar] [CrossRef]
- Bantan, R.A.R.; Jamal, F.; Chesneau, C.; Elgarhy, M. Truncated inverted Kumaraswamy generated family of distributions with applications. Entropy 2019, 21, 1089. [Google Scholar] [CrossRef] [Green Version]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions; Wiley: New York, NY, USA, 1994; Volume 1. [Google Scholar]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions; Wiley: New York, NY, USA, 1995; Volume 2. [Google Scholar]
- Tahir, M.H.; Cordeiro, G.M. Compounding of distributions: A survey and new generalized classes. J. Stat. Distrib. Appl. 2016, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Z.; Hamedani, G.G.; Butt, N.S. Recent developments in distribution theory: A brief survey and some new generalized classes of distributions. Pak. J. Stat. Oper. Res. 2019, 10, 87–110. [Google Scholar] [CrossRef] [Green Version]
- Aldahlan, M.A.; Jamal, F.; Chesneau, C.; Elgarhy, M.; Elbatal, I. The truncated Cauchy power family of distributions with inference and applications. Entropy 2020, 22, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bantan, R.A.R.; Chesneau, C.; Jamal, F.; Elbatal, I.; Elgarhy, M. The truncated Burr X-G family of distributions: Properties and applications to actuarial and financial data. Entropy 2021, 23, 1088. [Google Scholar] [CrossRef] [PubMed]
- Amigó, J.M.; Balogh, S.G.; Hernández, S. A brief review of generalized entropies. Entropy 2018, 20, 813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotz, S.; Leiva, V.; Sanhueza, A. Two new mixture models related to the inverse Gaussian distribution. Methodol. Comput. Appl. Probab. 2010, 12, 199–212. [Google Scholar] [CrossRef]
- Alkadya, W.; ElBahnasy, K.; Leiva, V.; Gad, W. Classifying COVID-19 based on amino acids encoding with machine learning algorithms. Chemom. Intell. Lab. Syst. 2022, 224, 104535. [Google Scholar] [CrossRef] [PubMed]
- Nor, A.K.M.; Pedapati, S.R.; Muhammad, M.; Leiva, V. Abnormality detection and failure prediction using explainable Bayesian deep learning: Methodology and case study with industrial data. Mathematics 2022, 10, 554. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Gupta, R.; Kundu, D.; Leiva, V.; Sanhueza, A. On some mixture models based on the Birnbaum-Saunders distribution and associated inference. J. Stat. Plan. Inference 2011, 141, 2175–2190. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, S.; Liu, R.; Zhang, L.; Ma, Z. Secure and robust digital image watermarking scheme using logistic and RSA encryption. Expert Syst. Appl. 2018, 97, 95–105. [Google Scholar] [CrossRef]
- Kevorkian, J.; Cole, J.D. Perturbation Methods in Applied Mathematics; Springer: New York, NY, USA, 2013. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing; Academic Press: Cambridge, UK, 1999. [Google Scholar]
- Burrus, C.S.; Gopinath, R.A.; Guo, H.; Odegard, J.E.; Selesnick, I.W. Introduction to Wavelets and Wavelet Transforms: A Primer; Prentice Hall: New Jersey, NY, USA, 1998. [Google Scholar]
- Bae, C.; Lee, S.; Jung, Y. High-speed continuous wavelet transform processor for vital signal measurement using frequency-modulated continuous wave radar. Sensors 2022, 22, 3073. [Google Scholar] [CrossRef] [PubMed]
- Meyer, Y. Ondelettes et Opérateur, I et II; Hermann: Paris, France, 1990. [Google Scholar]
- Ghaderpour, E.; Pagiatakis, S.D.; Hassan, Q.K. A survey on change detection and time series analysis with applications. Appl. Sci. 2021, 11, 6141. [Google Scholar] [CrossRef]
- Qian, S. Introduction to Time-Frequency and Wavelet Transforms; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Li, S.; Huang, W.; Shi, J.; Jiang, X.; Zhu, Z. A fast signal estimation method based on probability density functions for fault feature extraction of rolling bearings. Appl. Sci. 2019, 9, 3768. [Google Scholar] [CrossRef] [Green Version]
- Dutra da Silva, R.; Robson, W.; Pedrini Schwartz, H. Image segmentation based on wavelet feature descriptor and dimensionality reduction applied to remote sensing. Chilean J. Stat. 2011, 2, 51–60. [Google Scholar]
- Daubechies, I. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 1988, 41, 906–996. [Google Scholar] [CrossRef] [Green Version]
- Daubechies, I. Ten Lectures on Wavelets; CBMS-NSF Regional Conference Series in Applied Mathematics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992; Volume 61. [Google Scholar]
- de Oliveira, H.M.; Cintra, R.J. A new information theory concept: Information-weighted heavy-tailed distributions. arXiv 2016, arXiv:1601.06412. [Google Scholar]
- de Oliveira, H.M.; Araujo, G.A.A. Compactly supported one-cyclic wavelets derived from beta distributions. J. Commun. Inf. Syst. 2005, 20, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Vermehren, V.; de Oliveira, H.M. Close approximations for daublets and their spectra. arXiv 2010, arXiv:1502.01424. [Google Scholar]
- Mahdi, E.; Leiva, V.; Mara’Beh, S.; Martin-Barreiro, C. A new approach to predicting cryptocurrency returns based on the gold prices with support vector machines during the COVID-19 pandemic using sensor-related data. Sensors 2021, 21, 6319. [Google Scholar] [CrossRef] [PubMed]
- Rojas, F.; Leiva, V.; Huerta, M.; Martin-Barreiro, C. Lot-size models with uncertain demand considering its skewness/kurtosis and stochastic programming applied to hospital pharmacy with sensor-related COVID-19 data. Sensors 2021, 21, 5198. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Figueroa, J.A.; Martin-Barreiro, C.; Nieto-Librero, A.B.; Leiva, V.; Galindo-Villardon, M.P. A new principal component analysis by particle swarm optimization with an environmental application for data science. Stoch. Environ. Res. Risk Assess. 2021, 35, 1969–1984. [Google Scholar] [CrossRef]
- Martin-Barreiro, C.; Ramirez-Figueroa, J.A.; Cabezas, X.; Leiva, V.; Martin-Casado, A.; Galindo-Villardón, M.P. A new algorithm for computing disjoint orthogonal components in the parallel factor analysis model with simulations and applications to real-world data. Mathematics 2021, 9, 2058. [Google Scholar] [CrossRef]
- MacKay, D.J.C. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, H.M.; Ospina, R.; Leiva, V.; Martin-Barreiro, C.; Chesneau, C. A New Wavelet-Based Privatization Mechanism for Probability Distributions. Sensors 2022, 22, 3743. https://doi.org/10.3390/s22103743
de Oliveira HM, Ospina R, Leiva V, Martin-Barreiro C, Chesneau C. A New Wavelet-Based Privatization Mechanism for Probability Distributions. Sensors. 2022; 22(10):3743. https://doi.org/10.3390/s22103743
Chicago/Turabian Stylede Oliveira, Hélio M., Raydonal Ospina, Víctor Leiva, Carlos Martin-Barreiro, and Christophe Chesneau. 2022. "A New Wavelet-Based Privatization Mechanism for Probability Distributions" Sensors 22, no. 10: 3743. https://doi.org/10.3390/s22103743
APA Stylede Oliveira, H. M., Ospina, R., Leiva, V., Martin-Barreiro, C., & Chesneau, C. (2022). A New Wavelet-Based Privatization Mechanism for Probability Distributions. Sensors, 22(10), 3743. https://doi.org/10.3390/s22103743