Encoding Stability into Laser Powder Bed Fusion Monitoring Using Temporal Features and Pore Density Modelling
<p>Flowchart of the proposed LPBF monitoring system with our main contributions highlighted in red. A high-speed video camera is used to capture melt pool and spatter information, which is then summarised into spatial <span class="html-italic">and temporal</span> features. These features are then used to <span class="html-italic">directly predict</span> the density of pores created in the 3D-printed part. See the text for further details.</p> "> Figure 2
<p>Installation of the high-speed camera on our LPBF printer.</p> "> Figure 3
<p>An example frame of the high-speed video along with notations used in the feature extraction. The frame alone <math display="inline"><semantics> <mrow> <mi>????</mi> <mo>(</mo> <mo>·</mo> <mo>,</mo> <mo>·</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> is shown in (<b>a</b>), while the laser location <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>c</mi> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>c</mi> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> </semantics></math> and direction <math display="inline"><semantics> <mrow> <mi mathvariant="bold">v</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> are shown in blue in (<b>b</b>). The angular zones used for measuring spatter direction are shown in blue in (<b>c</b>).</p> "> Figure 4
<p>Illustration of the pore segmentation process. Shown is a trans-axial (vertical) slice through the centre of a printed object, with the locations of the non-optimal print layers indicated in red (<b>left</b>). Horizontal slices through a lack-of-fusion layer (<b>top</b>) and a keyhole layer (<b>bottom</b>), indicated with arrows, are shown. For these layers, the original CT, the denoised CT, and the segmented pores are shown from left to right.</p> "> Figure 5
<p>The object printed to generate training and testing datasets (left). Pores were induced in the bulk of the object over groups of three consecutive layers using the printing schemes on the right. (<b>a</b>) The object after printing and cutting. (<b>b</b>) Off-nominal print layer (red = area with off-nominal laser settings). (<b>c</b>) Three consecutive off-nominal print layers.</p> "> Figure 6
<p>The predictions on the test data set averaged per layer, with the targets at the off-nominal layers indicated with dots. (<b>a</b>) System settings’ predictions without (left) and with (right) temporal features. (<b>b</b>) Pore density predictions without (left) and with (right) temporal features.</p> "> Figure 7
<p>CT image, predicted laser settings and predicted pore densities, for a layer printed with higher-than-nominal laser speed (Section ID = 11 in <a href="#sensors-22-03740-t001" class="html-table">Table 1</a>). Note that the addition of temporal features improved the predictions for both laser speed and lack-of-fusion porosity. These improved predictions were most noticeable in the region highlighted in red. (<b>a</b>) CT image with lack-of-fusion pores. (<b>b</b>) Predicted laser settings. (<b>c</b>) Predicted pore densities.</p> "> Figure 8
<p>CT image, predicted laser settings, and predicted pore densities, for a layer printed with higher-than-nominal laser power (Section ID = 11 in <a href="#sensors-22-03740-t001" class="html-table">Table 1</a>). Note that the laser settings’ predictions would recommend a larger amount of intervention in the printing process, especially in the region highlighted in red, despite the limited production of pores. (<b>a</b>) CT Image with keyhole pores. (<b>b</b>) Predicted laser settings. (<b>c</b>) Predicted pore densities.</p> ">
Abstract
:1. Introduction
- Introducing temporal features into LPBF monitoring to summarise the behaviour of the LPBF process over time. These features allow for the direct measurement of print stability.
- Defect density regression: We introduce a neural network model that uniquely links video features to the pore density estimates collected from post-print X-ray computed tomography (CT) imaging. With this model, we aim to reduce the number of printer control actions down to only those that are necessary to avoid the creation of defects, thereby increasing stability in the printer control.
2. Materials and Methods
2.1. Data Collection
2.1.1. LPBF Machine, Material, and Settings
2.1.2. Camera Monitoring System
2.1.3. CT Imaging System
2.2. Optical Feature Extraction
2.2.1. Melt Pool Area
2.2.2. Melt Pool Width–Length Ratio
2.2.3. Amount of Spatter
2.2.4. Number of Spatters
2.2.5. Melt Pool Intensity
2.2.6. Spatter Direction
2.2.7. Image Texture Features
2.3. Temporal Features
2.4. Pore Density Measurement
2.5. Pore Density Estimation
2.6. Experimental Setup
2.6.1. Description of Object and Printing
2.6.2. Data Preprocessing and Model Training
3. Results
3.1. Temporal Features
3.2. Pore Density Estimation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez, M.; Carou, D.; Rubio, E.M.; Teti, R. Current advances in additive manufacturing. Procedia CIRP 2020, 88, 439–444. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E.; Shi, A.; Yang, L.; Shirowzhan, S.; Edwards, D.J. Additive Manufacturing Applications for Industry 4.0: A Systematic Critical Review. Buildings 2020, 10, 231. [Google Scholar] [CrossRef]
- Kruth, J.P.; Badrossamay, M.; Yasa, E.; Deckers, J.; Thijs, L.; Van Humbeeck, J. Part and material properties in selective laser melting of metals. In Proceedings of the 16th International Symposium on Electromachining (ISEM XVI), Shanghai, China, 19–23 April 2010; pp. 3–14. [Google Scholar]
- Grasso, M.; Colosimo, B.M. Process defects and in situ monitoring methods in metal powder bed fusion: A review. Meas. Sci. Technol. 2017, 28, 044005. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Li, Y.; Bai, Q. Defect formation mechanisms in selective laser melting: A review. Chin. J. Mech. Eng. 2017, 30, 515–527. [Google Scholar] [CrossRef] [Green Version]
- Jayasinghe, S.; Paoletti, P.; Sutcliffe, C.; Dardis, J.T.; Jones, N.; Green, P.L. Automatic Quality Assessments of Laser Powder Bed Fusion Builds from Photodiode Sensor Measurements; Technical Report; University of Liverpool: Liverpool, UK, 2020. [Google Scholar]
- Colosimo, B.M.; Cavalli, S.; Grasso, M. A cost model for the economic evaluation of in-situ monitoring tools in metal additive manufacturing. Int. J. Prod. Econ. 2020, 223, 107532. [Google Scholar] [CrossRef]
- Lane, B.; Zhirnov, I.; Mekhontsev, S.; Grantham, S.; Ricker, R.; Rauniyar, S.; Chou, K. Transient Laser Energy Absorption, Co-axial Melt Pool Monitoring, and Relationship to Melt Pool Morphology. Addit. Manuf. 2020, 36, 101504. [Google Scholar] [CrossRef]
- Yang, L.; Lo, L.; Ding, S.; Özel, T. Monitoring and detection of meltpool and spatter regions in laser powder bed fusion of super alloy Inconel 625. Prog. Addit. Manuf. 2020, 5, 367–378. [Google Scholar] [CrossRef]
- Scime, L.; Beuth, J. Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Addit. Manuf. 2019, 25, 151–165. [Google Scholar] [CrossRef]
- Boos, E.; Schwarzenberger, M.; Jaretzki, M.; Ihlenfeldt, S. Melt Pool Monitoring using Fuzzy Based Anomaly Detection in Laser Beam Melting. In Proceedings of the Metal Additive Manufacturing Conference, Örebro, Sweden, 30 September–2 October 2020; pp. 1–11. [Google Scholar]
- Craeghs, T.; Bechmann, F.; Berumen, S.; Kruth, J.P. Feedback control of Layerwise Laser Melting using optical sensors. Phys. Procedia 2010, 5, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hong, G.S.; Ye, D.; Zhu, K.; Fuh, J.Y. Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring. Mater. Des. 2018, 156, 458–469. [Google Scholar] [CrossRef]
- Guo, S.; Guo, W.; Bain, L. Hierarchical spatial-temporal modelling and monitoring of melt pool evolution in laser-based additive manufacturing. IISE Trans. 2019, 52, 977–997. [Google Scholar] [CrossRef]
- Vandone, A.; Baraldo, S.; Valente, A.; Mazzucato, F. Vision-based melt pool monitoring system setup for additive manufacturing. In Proceedings of the 52nd CIRP Conference on Manufacturing Systems, Ljubljana, Slovenia, 12–14 June 2019; Volume 81, pp. 747–752. [Google Scholar]
- Baumgartl, H.; Tomas, J.; Buettner, R.; Merkel, M. A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring. Prog. Addit. Manuf. 2020, 5, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Craeghs, T.; Clijsters, S.; Yasa, E.; Kruth, J.P. Online Quality Control of Selective Laser Melting. In Proceedings of the International Solid Freeform Fabrication Symposium, Austin, TX, USA, 8–10 August 2011; pp. 212–226. [Google Scholar]
- Bisht, M.; Ray, N.; Verbist, F.; Coeck, S. Correlation of selective laser melting-melt pool events with the tensile properties of Ti-6Al-4V ELI processed by laser powder bed fusion. Addit. Manuf. 2018, 22, 302–306. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, Y.; Yeung, H.; Krishnamurty, S. Investigation of Deep Learning for Real-Time Melt Pool Classification in Additive Manufacturing. In Proceedings of the IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada, 22–26 August 2019; pp. 640–647. [Google Scholar]
- Clijsters, S.; Craeghs, T.; Buls, S.; Kempen, K.; Kruth, J.P. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int. J. Adv. Manuf. Technol. 2014, 75, 1089–1101. [Google Scholar] [CrossRef]
- Khanzadeh, M.; Chowdhury, S.; Marufuzzaman, M.; Tschopp, M.A.; Bian, L. Porosity prediction: Supervised-learning of thermal history for direct laser deposition. J. Manuf. Syst. 2018, 47, 69–82. [Google Scholar] [CrossRef]
- Özel, T.; Shaurya, A.; Altay, A.; Yang, L. Process monitoring of meltpool and spatter for temporal-spatial modelling of laser powder bed fusion process. In Proceedings of the 10th CIRP Conference on Photonic Technologies (LANE 2018), Fürth, Germany, 3–6 September 2018; Volume 74, pp. 102–106. [Google Scholar]
- Booth, B.G.; Sijbers, J.; De Beenhouwer, J. A Machine Learning Approach to Growth Direction Finding for Automated Planting of Bulbous Plants. Sci. Rep. 2020, 10, 661. [Google Scholar] [CrossRef]
- Kwon, O.; Kim, H.G.; Ham, M.J.; Kim, W.; Kim, G.H.; Cho, J.H.; Kim, N.I.; Kim, K. A deep neural network for classification of melt-pool images in metal additive manufacturing. J. Intell. Manuf. 2020, 31, 375–386. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, S.; Shin, Y.C. In-Process monitoring of porosity during laser additive manufacturing process. Addit. Manuf. 2019, 28, 497–505. [Google Scholar] [CrossRef]
- Aminzadeh, M.; Kurfess, T.R. Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images. J. Intell. Manuf. 2019, 30, 2505–2523. [Google Scholar] [CrossRef]
- Gower, J.C.; Dijksterhuis, G.B. Procrustes Problems; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Shapiro, L.G.; Stockman, G.C. Binary Image Analysis. In Computer Vision; Prentice Hall: Hoboken, BJ, USA, 2001; Chapter 3; pp. 63–106. [Google Scholar]
- Fisher, B.A.; Lane, B.; Yeung, H.; Beuth, J. Toward determining melt pool quality metrics via coaxial monitoring in laser powder bed fusion. Manuf. Lett. 2018, 15, 119–121. [Google Scholar] [CrossRef]
- Gibson, B.T.; Bandari, Y.K.; Richardson, B.S.; Roschli, A.C.; Post, B.K.; Borish, M.C.; Thornton, A.S.; Henry, W.C.; Lamsey, M.D.; Love, L.J. Melt Pool Monitoring for Control and Data Analytics in Large-Scale Metal Additive Manufacturing. In Proceedings of the International Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 2019; pp. 1–19. [Google Scholar]
- Grasso, M.; Demir, A.; Previtali, B.; Colosimo, B. In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume. Robot. Comput.-Integr. Manuf. 2018, 49, 229–239. [Google Scholar] [CrossRef]
- Kledwig, C.; Perfahl, H.; Reisacher, M.; Brückner, F.; Bliedtner, J.; Leyens, C. Analysis of Melt Pool Characteristics and Process Parameters Using a Coaxial Monitoring System during Directed Energy Deposition in Additive Manufacturing. Materials 2019, 12, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, L.; Wang, F.; Li, S.; Han, X. Phase congruency melt pool edge extraction for laser additive manufacturing. J. Mater. Process. Technol. 2017, 250, 261–269. [Google Scholar] [CrossRef]
- Fu, C.H.; Guo, Y.B. 3-Dimensional finite element modelling of selective laser melting Ti-6AL-4V alloy. In Proceedings of the International Solid Freeform Fabrication Symposium, Austin, TX, USA, 4–6 August 2014; pp. 1129–1144. [Google Scholar]
- Sampson, R.; Lancaster, R.; Sutcliffe, M.; Carswell, D.; Hauser, C.; Barras, J. An improved methodology of melt pool monitoring of direct energy deposition processes. Opt. Laser Technol. 2020, 127, 106194. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Q.; Cao, H.; Wu, W.; Ma, H.; Ding, X.; Yang, J.; Duan, X.; Fan, S. Melt pool boundary extraction and its width prediction from infrared images in selective laser melting. Mater. Des. 2019, 183, 108110. [Google Scholar] [CrossRef]
- Heeling, T.; Gerstgrasser, M.; Wegener, K. Investigation of selective laser melting spatter characteristics for single- and multi-beam strategies using high speed imaging. In Proceedings of the Lasers in Manufacturing Conference, Munich, Germany, 26–29 June 2017; pp. 1–10. [Google Scholar]
- Ji, Z.; Han, Q. A novel image feature descriptor for SLM spattering pattern classification using a consumable camera. Int. J. Adv. Manuf. Technol. 2020, 110, 2955–2976. [Google Scholar] [CrossRef]
- Coolidge, J.L. The Origin of Polar Coordinates. Am. Math. Mon. 1952, 59, 78–85. [Google Scholar] [CrossRef]
- Radon, J. On the determination of functions from their integral values along certain manifolds. IEEE Trans. Med. Imaging 1986, 5, 170–176. [Google Scholar] [CrossRef]
- Heylen, R.; Thanki, A.; Verhees, D.; Iuso, D.; Beenhouwer, J.D.; Sijbers, J.; Witvrouw, A.; Haitjema, H.; Bey-Temsamani, A. 3D total variation denoising in X-CT imaging applied to pore extraction in additively manufactured parts. Meas. Sci. Technol. 2022, 33, 045602. [Google Scholar] [CrossRef]
- Thanki, A.; Goossens, L.; Mertens, R.; Probst, G.; Dewulf, W.; Witvrouw, A.; Yang, S. Study of keyhole-porosities in selective laser melting using X-ray computed tomography. In Proceedings of the ICT 2019, Atlanta, GA, USA, 4–6 December 2019; pp. 1–7. [Google Scholar]
- Goossens, B.; De Vylder, J.; Philips, W. Quasar—A new heterogeneous programming framework for image and video processing algorithms on CPU and GPU. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 2183–2185. [Google Scholar]
- Huang, Y.; Fleming, T.G.; Clark, S.J.; Marussi, S.; Fezzaa, K.; Thiyagalingam, J.; Leung, C.L.A.; Lee, P.D. Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing. Nat. Commun. 2022, 13, 1170. [Google Scholar] [CrossRef]
- Choo, H.; Sham, K.L.; Bohling, J.; Ngo, A.; Xiao, X.; Ren, Y.; Depond, P.J.; Matthews, M.J.; Garlea, E. Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel. Mater. Des. 2019, 164, 107534. [Google Scholar] [CrossRef]
- Piazza, S.; Merrigan, B.; Dowling, D.P.; Celikin, M. The effects of geometry and laser power on the porosity and melt pool formation in additively manufactured 316L stainless steel. Int. J. Adv. Manuf. Technol. 2020, 111, 1457–1470. [Google Scholar] [CrossRef]
Section | Laser Power | Laser Speed | Lack-of-Fusion | Keyhole |
---|---|---|---|---|
ID | (% of Nominal) | (% of Nominal) | LPD | LPD |
1 | 100 | 80.0 | 0 | 0 |
2 | 100 | 66.7 | 0 | 0.691 |
3 | 100 | 50.0 | 0 | 2.94 |
4 | 100 | 40.0 | 0 | 4.82 |
5 | 100 | 33.3 | 0 | 5.93 |
6 | 100 | 25.0 | 0 | 6.52 |
7 | 150 | 100 | 0 | 0 |
8 | 200 | 100 | 0 | 0 |
9 | 233 | 93.0 | 0 | 0.575 |
10 | 100 | 133 | 0 | 0 |
11 | 100 | 200 | 1.77 | 0 |
12 | 75.0 | 100 | 0 | 0 |
13 | 50.0 | 100 | 1.71 | 0 |
14 | 25.0 | 100 | 4.77 | 0 |
Feature Type | Number of Features | Described in... |
---|---|---|
Melt pool area | 1 | Section 2.2.1 |
Melt pool width–length ratio | 1 | Section 2.2.2 |
Amount of spatter | 1 | Section 2.2.3 |
Number of spatters | 1 | Section 2.2.4 |
Melt pool intensity | 1 | Section 2.2.5 |
Spatter direction | 6 (1 per angular zone) | Section 2.2.6 |
Histogram of oriented gradients | 9 (1 per histogram bin) | Section 2.2.7 |
Temporal variances | 20 (1 per spatial feature) | Section 2.3 |
Ground Truth Correlations | |||
---|---|---|---|
Predicted Measure | Without Temporal | With Temporal | Improvement |
Features | Features | ||
Laser Power | 0.871 | 0.892 | +0.021 |
Inverse Laser Speed | 0.645 | 0.813 | +0.168 |
Lack-of-Fusion LPD | 0.881 | 0.916 | +0.035 |
Keyhole LPD | 0.650 | 0.819 | +0.169 |
Predictor | Correlation with Porosity | |
---|---|---|
Lack-of-Fusion | Keyhole | |
Laser Speed and Power | 0.524 | 0.616 |
Lack-of-Fusion LPD | 0.916 | - |
Keyhole LPD | - | 0.819 |
Improvement | +0.392 | +0.203 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Booth, B.G.; Heylen, R.; Nourazar, M.; Verhees, D.; Philips, W.; Bey-Temsamani, A. Encoding Stability into Laser Powder Bed Fusion Monitoring Using Temporal Features and Pore Density Modelling. Sensors 2022, 22, 3740. https://doi.org/10.3390/s22103740
Booth BG, Heylen R, Nourazar M, Verhees D, Philips W, Bey-Temsamani A. Encoding Stability into Laser Powder Bed Fusion Monitoring Using Temporal Features and Pore Density Modelling. Sensors. 2022; 22(10):3740. https://doi.org/10.3390/s22103740
Chicago/Turabian StyleBooth, Brian G., Rob Heylen, Mohsen Nourazar, Dries Verhees, Wilfried Philips, and Abdellatif Bey-Temsamani. 2022. "Encoding Stability into Laser Powder Bed Fusion Monitoring Using Temporal Features and Pore Density Modelling" Sensors 22, no. 10: 3740. https://doi.org/10.3390/s22103740
APA StyleBooth, B. G., Heylen, R., Nourazar, M., Verhees, D., Philips, W., & Bey-Temsamani, A. (2022). Encoding Stability into Laser Powder Bed Fusion Monitoring Using Temporal Features and Pore Density Modelling. Sensors, 22(10), 3740. https://doi.org/10.3390/s22103740