[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A novel claim size distribution based on a Birnbaum–Saunders and gamma mixture capturing extreme values in insurance: estimation, regression, and applications

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Data including significant losses are a pervasive issue in general insurance. The computation of premiums and reinsurance premiums, using deductibles, in situations of heavy right tail for the empirical distribution, is crucial. In this paper, we propose a mixture model obtained by compounding the Birnbaum–Saunders and gamma distributions to describe actuarial data related to financial losses. Closed-form credibility and limited expected value premiums are obtained. Moment estimators are utilized as starting values in the non-linear search procedure to derive the maximum-likelihood estimators and the asymptotic variance–covariance matrix for these estimators is determined. In comparison to other competing models commonly employed in the actuarial literature, the new mixture distribution provides a satisfactory fit to empirical data across the entire range of their distribution. The right tail of the empirical distribution is essential in the modeling and computation of reinsurance premiums. In addition, in this paper, to make advantage of all available data, we create a regression structure based on the compound distribution. Then, the response variable is explained as a function of a set of covariates using this structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecher H, Beirlant J, Eugels J (2017) Reinsurance: actuarial and statistical aspects. Wiley, New York

    Book  Google Scholar 

  • Arnold B (1983) Pareto distributions. International Cooperative Publishing House, Silver Spring

    MATH  Google Scholar 

  • Aykroyd RG, Leiva V, Marchant C (2018) Multivariate Birnbaum–Saunders distributions: modelling and applications. Risks 6:21

    Article  Google Scholar 

  • Azevedo C, Leiva V, Athayde E, Balakrishnan N (2012) Shape and change point analyses of the Birnbaum–Saunders-t hazard rate and associated estimation. Comput Stat Data Anal 56:3887–3897

    Article  MathSciNet  Google Scholar 

  • Beirlant J, Teugels J, Vynckier P (1996) Practical analysis of extreme values. Leuven University Press, Leuve

    MATH  Google Scholar 

  • Beirlant J, Matthys GJ, Dierckx G (2005) Heavy-tailed distributions and rating. Astin Bull 31:41–62

    MathSciNet  Google Scholar 

  • Birnbaum ZW, Saunders SC (1969) A new family of life distributions. J Appl Probab 6:319–327

    Article  MathSciNet  Google Scholar 

  • Boland P (2007) Statistical and probabilistic methods in actuarial science. Chapman and Hall, New York

    Book  Google Scholar 

  • Brooks C (2009) RATS handbook to accompany introductory econometrics for finance. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bühlmann H, Gisler A (2005) A course in credibility theory and its applications. Springer, New York

    MATH  Google Scholar 

  • Calderín-Ojeda E, Fergusson K, Wu X (2017) An EM algorithm for double-Pareto-lognormal generalized linear model applied to heavy-tailed insurance claims. Risks 5:60

    Article  Google Scholar 

  • Carrasco JMF, Figueroa-Zuniga J, Leiva V, Riquelme M, Aykroyd RG (2020) An errors-in-variables model based on the Birnbaum–Saunders and its diagnostics with an application to earthquake data. Stoch Environ Res Risk Assess 34:369–380

    Article  Google Scholar 

  • Desousa M, Saulo H, Leiva V, Santos-Neto M (2020) On a new mixture-based regression model: simulation and application to data with high censoring. J Stat Comput Simul 90:2861–2877

    Article  MathSciNet  Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, New York

  • Embrechts P, Resnick S, Samorodnitsky G (1999) Extreme value theory as a risk management tool. N Am Actuarial J 3:30–41

    Article  MathSciNet  Google Scholar 

  • Figueroa-Zuniga J, Bayes CL, Leiva V, Liu S (2022) Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications. Stat Pap. https://doi.org/10.1007/s00362-021-01260-1 (in press)

    Article  MathSciNet  Google Scholar 

  • Garcia-Papani F, Leiva V, Uribe-Opazo MA, Aykroyd RG (2018) Birnbaum–Saunders spatial regression models: diagnostics and application to chemical data. Chemom Intell Lab Syst 177:114–128

    Article  Google Scholar 

  • Gómez-Déniz E (2008) A generalization of the credibility theory obtained by using the weighted balanced loss function. Insur Math Econ 42:850–854

    Article  Google Scholar 

  • Hashemi F, Naderi M, Jamalizadeh A (2019) Normal mean-variance Lindley Birnbaum-Saunders distribution. Stat Interface 12(4):585–597

    Article  MathSciNet  Google Scholar 

  • Hashemi F, Naderi M, Mashinchi M (2019) Clustering right-skewed data stream via Birnbaum-Saunders mixture models: a flexible approach based on fuzzy clustering algorithm. Appl Soft Comput 82:105539

  • Huerta M, Leiva V, Liu S, Rodriguez M, Villegas D (2019) On a partial least squares regression model for asymmetric data with a chemical application in mining. Chemom Intell Lab Syst 190:55–68

    Article  Google Scholar 

  • Jessen AH, Mikosch T (2006) Regularly varying functions. Publ Inst Mat 80:171–192

  • Konstantinides D (2018) Risk theory. A heavy tail approach. World Scientific Publishing, New York

  • Korkmaz MÇ, Chesneau C (2021) On the unit Burr-XII distribution with the quantile regression modeling and applications. Comput Appl Math 40:29

    Article  MathSciNet  Google Scholar 

  • Leiva V (2016) The Birnbaum–Saunders distribution. Academic Press, New York

  • Leiva V, Saulo H, Souza R, Aykroyd RG, Vila R (2021) A new BISARMA time series model for forecasting mortality using weather and particulate matter data. J Forecast 40:346–364

    Article  MathSciNet  Google Scholar 

  • Liu S, Leiva V, Zhuang D, Ma T, Figueroa-Zuniga J (2021) Matrix differential calculus with applications in the multivariate linear model and its diagnostics. J Multivar Anal 188:104849

    Article  MathSciNet  Google Scholar 

  • Marchant C, Leiva V, Cysneiros FJA (2016) A multivariate log-linear model for Birnbaum–Saunders distributions. IEEE Trans Reliab 65:816–827

  • Martinez S, Giraldo R, Leiva V (2019) Birnbaum–Saunders functional regression models for spatial data. Stoch Environ Res Risk Assess 33:1765–1780

  • Naderi M, Hashemi F, Bekker A, Jamalizadeh A (2020) Modeling right-skewed financial data streams: a likelihood inference based on the generalized Birnbaum–Saunders mixture model. Appl Math Comput 376:125109

  • Naderi M, Mozafari M, Okhli K (2020) Finite mixture modeling via skew-Laplace Birnbaum–Saunders distribution. J Stat Theory Appl 19:49–58

  • Ribeiro TF, Cordeiro GM, Peña-Ramírez FA, Guerra RR (2021) A new quantile regression for the COVID-19 mortality rates in the United States. Comput Appl Math 40(255):1–16

    MathSciNet  MATH  Google Scholar 

  • Rolski T, Schmidli H, Schmidt V, Teugel J (1999) Stochastic processes for insurance and finance. Wiley, New York

  • Ruskeepaa H (2009) Mathematica navigator. Mathematics, statistics, and graphics. Academic Press, New York

  • Sanchez L, Leiva V, Galea M, Saulo H (2020) Birnbaum-Saunders quantile regression models with application to spatial data. Mathematics 8:1000

    Article  Google Scholar 

  • Sanchez L, Leiva V, Galea M, Saulo H (2021) Birnbaum-Saunders quantile regression and its diagnostics with application to economic data. Appl Stoch Model Bus Ind 37:53–73

    Article  MathSciNet  Google Scholar 

  • Saulo H, Dasilva A, Leiva V, Sanchez L, de la Fuente-Mella H (2022) Log-symmetric quantile regression models. Stat Neerl 76:124–163

    Article  MathSciNet  Google Scholar 

  • Villegas C, Paula GA, Leiva V (2011) Birnbaum–Saunders mixed models for censored reliability data analysis. IEEE Trans Reliab 60:748–758

  • Vuong Q (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57:307–333

    Article  MathSciNet  Google Scholar 

  • Wilcox R (2010) Fundamentals of modern statistical methods. Substantially improving power and accuracy. Springer, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Chesneau.

Additional information

Communicated by Eduardo Souza de Cursi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez–Déniz, E., Leiva, V., Calderín–Ojeda, E. et al. A novel claim size distribution based on a Birnbaum–Saunders and gamma mixture capturing extreme values in insurance: estimation, regression, and applications. Comp. Appl. Math. 41, 171 (2022). https://doi.org/10.1007/s40314-022-01875-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01875-6

Keywords

Mathematics Subject Classification

Navigation