High-Performance Gas Sensor of Polyaniline/Carbon Nanotube Composites Promoted by Interface Engineering
<p>Schematic of sensing test for chemiresistive sensor of hierarchical PANI/CNT fibers.</p> "> Figure 2
<p>(<b>a</b>) SEM, (<b>b</b>) TEM image of MWCNTs; (<b>c</b>) SEM, (<b>d</b>) TEM image of p-PANI/CNT fibers, Inset: Magnified TEM image of p-PANI/CNT fibers; (<b>e</b>) SEM, (<b>f</b>) TEM image of n-PANI/CNT fibers.</p> "> Figure 3
<p>(<b>a</b>) FTIR spectra, (<b>b</b>) UV-vis spectra of MWCNTs, p-PANI, p-PANI/CNT, n-PANI and n-PANI/CNT fibers.</p> "> Figure 4
<p>Response curves of p-PANI/CNT to 50 ppm of (<b>a</b>) NO<sub>2</sub>, (<b>b</b>) NH<sub>3</sub>; Response curves of p-PANI to 50 ppm of (<b>c</b>) NO<sub>2</sub>, (<b>d</b>) NH<sub>3</sub>; Response curves of MWCNTs to 50 ppm of (<b>e</b>) NO<sub>2</sub>, (<b>f</b>) NH<sub>3</sub>; Response curves of n-PANI to 50 ppm of (<b>g</b>) NO<sub>2</sub>, (<b>h</b>) NH<sub>3</sub>; Response curves of n-PANI/CNT to 50 ppm of (<b>i</b>) NO<sub>2</sub>, (<b>j</b>) NH<sub>3</sub>.</p> "> Figure 5
<p>(<b>a</b>) Relation between responses of p-PANI/CNT and NO<sub>2</sub> concentrations, (<b>b</b>) the fitting plots of responses Vs NO<sub>2</sub> concentration, (<b>c</b>) Relation between responses of n-PANI/CNT and NH<sub>3</sub> concentrations, (<b>d</b>) the fitting plots of responses Vs NH<sub>3</sub> concentration.</p> "> Figure 6
<p>(<b>a</b>) Responses, (<b>b</b>) response time of p-PANI/CNT and (<b>c</b>) responses, (<b>d</b>) response time of n-PANI/CNT to 50 ppm of NO<sub>2</sub> and NH<sub>3</sub>, 100 ppm of O<sub>3</sub>, C<sub>2</sub>H<sub>6</sub>O, C<sub>3</sub>H<sub>6</sub>O, CH<sub>2</sub>O and 100% RH.</p> "> Figure 7
<p>Response curves of the newly prepared sensor and sensor after three months at RT (<b>a</b>) p-PANI/CNT to 50 ppm of NO<sub>2</sub>, (<b>b</b>) n-PANI/CNT to 50 ppm of NH<sub>3</sub>.</p> "> Figure 8
<p>Possible sensing mechanism (<b>a</b>) sketch diagram of conductive network of hierarchical p-PANI/CNT fibers, (<b>b</b>) percolation path through conjugate interfaces of PANI and MWCNTs, (<b>c</b>) cross section of PANI/CNT fibers and (<b>d</b>) p–n heterojunction structure of hierarchical n-PANI/CNT fibers.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sensing Materials
2.3. Device Fabrication and Sensing Tests
2.4. Characterization
3. Results
3.1. Preparation of Hierarchical PANI/CNT Composite Fibers
3.2. Gas-Sensing Performance of PANI/CNTs Composite Fibers
3.3. Analysis of Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of things: Vision, applications and research challenges. Ad. Hoc. Netw. 2012, 10, 1497–1516. [Google Scholar] [CrossRef] [Green Version]
- Michaels, R.A. Emergency planning and the acute toxic potency of inhaled ammonia. Environ. Health Perspect. 1999, 107, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Timmer, B.; Olthuis, W.; Berg, A.V.D. Ammonia sensors and their applications—A review. Sens. Actuators B Chem. 2005, 107, 666–677. [Google Scholar] [CrossRef]
- Behera, S.N.; Sharma, M.; Aneja, V.P.; Balasubramanian, R. Ammonia in the atmosphere: A review on emission sources, atmospheric; chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 2013, 20, 8092–8131. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.J.; Huang, L.; Zhou, Q.Q.; Shi, G.Q. Ultrasensitive and Selective Nitrogen Dioxide Sensor Based on Self-Assembled Graphene/Polymer Composite Nanofibers. ACS Appl. Mater. Interfaces 2014, 6, 17003–17008. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Zhang, B.; Xiao, Y.; Gao, Y.; Yang, Q.; Wang, Y.; Lu, G. Ultrasensitive and low detection limit of nitrogen dioxide gas sensor based on flower-like ZnO hierarchical nanostructure modified by reduced graphene oxide. Sens. Actuators B Chem. 2017, 249, 715–724. [Google Scholar] [CrossRef]
- Cha, J.H.; Choi, S.J.; Yu, S.; Kim, I.D. 2D WS 2 -Edge Functionalized Multi-Channel Carbon Nanofibers: Effect of WS 2 Edge-Abundant Structure on Room-Temperature NO2 Sensing. J. Mater. Chem. A 2017, 5, 8725–8732. [Google Scholar] [CrossRef]
- Ammu, S.; Dua, V.; Agnihotra, S.R.; Surwade, S.P.; Phulgirkar, A.; Patel, S.; Manohar, S.K. Flexible, All-Organic Chemiresistor for Detecting Chemically Aggressive Vapors. J. Am. Chem. Soc. 2012, 134, 4553–4556. [Google Scholar] [CrossRef]
- Mirica, K.A.; Weis, J.G.; Schnorr, J.M.; Esser, B.; Swager, T.M. Mechanical Drawing of Gas Sensors on Paper. Angew. Chem. Int. Ed. 2012, 51, 10740–10745. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, M.; Voznyy, O.; Hu, L.; Fu, Q.; Zhou, D.; Xia, Z.; Sargent, E.H.; Tang, J. Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 2014, 26, 2718. [Google Scholar] [CrossRef]
- Janata, J.; Josowicz, M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2003, 2, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Huang, J.; Kaner, R.B. Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Acc. Chem. Res. 2009, 40, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, S.; Khastgir, D.; Singha, N.K.; Lee, J.H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783–810. [Google Scholar] [CrossRef]
- Cho, S.; Kwon, O.; You, S.; Jang, J. Shape-controlled polyaniline chemiresistors for high-performance DMMP sensors: Effect of morphologies and charge-transport properties. J. Mater. Chem. 2013, 1, 5679–5688. [Google Scholar] [CrossRef]
- Bai, S.; Sun, C.; Wan, P.; Wang, C.; Luo, R.; Li, Y.; Liu, J.; Sun, X. Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors. Small 2015, 11, 306–310. [Google Scholar]
- Fei, J.; Cui, Y.; Yan, X.; Yang, Y.; Wang, K.; Li, J. Controlled fabrication of polyaniline spherical and cubic shells with hierarchical nanostructures. ACS Nano 2009, 3, 3714. [Google Scholar] [CrossRef]
- Zhang, Y.; Kim, J.J.; Chen, D.; Tuller, H.L.; Rutledge, G.C. Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases. Adv. Funct. Mater. 2014, 24, 4005–4014. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Dou, X.; Zhang, S.; Guo, L.; Zu, B.; Wu, Z.; Zeng, H. Nanosensors: A High-Performance Nitro-Explosives Schottky Sensor Boosted by Interface Modulation. Adv. Funct. Mater. 2015, 25, 4039–4048. [Google Scholar] [CrossRef]
- Xu, J.; Wang, K.; Zu, S.; Han, B.; Wei, Z. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage. ACS Nano 2010, 4, 5019–5026. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Gao, L. A study of the electrical properties of carbon nanotube-NiFe2O4 composites: Effect of the surface treatment of the carbon nanotubes. Carbon 2005, 43, 47–52. [Google Scholar]
- Liao, Y.Z.; Zhang, C.; Zhang, Y.; Strong, V.; Tang, J.S.; Li, X.G.; Kalantar-Zadeh, K.; Hoek, E.M.; Wang, K.L.; Kaner, R.B. Carbon Nanotube/Polyaniline composite nanofibers: Facile synthesis and chemosensors. Nano Lett. 2011, 11, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wan, M. Chiral polyaniline nanotubes synthesized via a self-assembly process. Thin Solid Film. 2005, 477, 24–31. [Google Scholar] [CrossRef]
- Huang, J.X.; Virji, S.; Weiller, B.H.; Kaner, R.B. Polyaniline nanofibers: Facile synthesis and chemical sensors. J. Am. Chem. Soc. 2003, 125, 314–315. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.X.; Kaner, R.B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 851–855. [Google Scholar] [CrossRef]
- Tanguy, N.R.; Thompson, M.; Yan, N. A review on advances in application of polyaniline for ammonia detection. Sens. Actuators B Chem. 2018, 257, 1044–1064. [Google Scholar] [CrossRef]
- Tai, H.L.; Jiang, Y.; Xie, G.Z.; Yu, J.S.; Chen, X. Fabrication and gas sensitivity of polyaniline-titanium dioxide nanocomposite thin film. Sens. Actuators B Chem. 2007, 125, 644–650. [Google Scholar] [CrossRef]
- Bai, S.L.; Tian, Y.L.; Cui, M.; Sun, J.H.; Tian, Y.; Luo, R.X.; Chen, A.F.; Li, D.Q. Polyaniline@SnO2 heterojunction loading on flexible PET thin film for detection of NH3 at room temperature. Sens. Actuators B Chem. 2016, 226, 540–547. [Google Scholar] [CrossRef]
- Wu, E.X.; Xie, Y.; Yuan, B.; Zhang, H.; Hu, X.D.; Liu, J.; Zhang, D.H. Ultrasensitive and Fully Reversible NO2 Gas Sensing Based on p-Type MoTe2 under Ultraviolet Illumination. ACS Sens. 2018, 3, 1719–1726. [Google Scholar] [CrossRef]
- Gong, J.; Li, Y.H.; Hu, Z.S.; Zhou, Z.Z.; Deng, Y.L. Ultrasensitive NH3 Gas Sensor from Polyaniline Nanograin Enchased TiO2 Fibers. J. Phys. Chem. C 2010, 114, 9970–9974. [Google Scholar] [CrossRef]
- Yavari, F.; Castillo, E.; Gullapalli, H.; Ajayan, P.M.; Koratkar, N. High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett. 2012, 100, 203120. [Google Scholar] [CrossRef]
- Fowler, J.D.; Allen, M.J.; Tung, V.C.; Yang, Y.; Kaner, R.B.; Weiller, B.H. Practical Chemical Sensors from Chemically Derived Graphene. ACS Nano 2009, 3, 301–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, B.; Yoon, J.; Lim, S.K.; Kim, A.R.; Kim, D.H.; Park, S.G.; Kwon, J.D.; Lee, Y.J.; Lee, K.H.; Lee, B.H.; et al. Chemical Sensing of 2D Graphene/MoS2 Heterostructure device. ACS Appl. Mater. Interfaces 2015, 7, 16775–16780. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.J.; Liu, A.R.; Huang, L.; Li, C.; Shi, G.Q. High-Performance NO2 Sensors Based on Chemically Modified Graphene. Adv. Mater. 2013, 25, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Su, P.G.; Shieh, H.C. Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide. Sens. Actuators B Chem. 2014, 190, 865–872. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Xie, D.; Xu, J.L.; Xia, Y.; Xiang, L. Enhanced p-type NO2-sensing properties of ZnO nanowires utilizing CNTs electrode. Mater. Lett. 2017, 206, 18–21. [Google Scholar] [CrossRef]
- Navale, Y.H.; Navale, S.T.; Ramgir, N.S.; Stadler, F.J.; Gupta, S.K.; Aswal, D.K.; Patil, V.B. Zinc oxide hierarchical nanostructures as potential NO2 sensors. Sens. Actuators B Chem. 2017, 251, 551–563. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, J.C.; Fei, T.; Liu, S.; Zhang, T. SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B Chem. 2014, 190, 472–478. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, S.J.; Kim, Y.J.; Shim, Y.S.; Kim, S.Y.; Hong, B.H.; Jang, H.W. Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending. ACS Nano 2015, 9, 10453–10460. [Google Scholar] [CrossRef]
- Franke, M.E.; Koplin, T.J.; Simon, U. Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2006, 2, 36–50. [Google Scholar] [CrossRef]
- Yang, Z.; Dou, X. Emerging and Future Possible Strategies for Enhancing 1D Inorganic Nanomaterials-Based Electrical Sensors towards Explosives Vapors Detection. Adv. Funct. Mater. 2016, 26, 2406–2425. [Google Scholar] [CrossRef]
- Lee, J.H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators B Chem. 2009, 140, 319–336. [Google Scholar] [CrossRef]
- Liao, Y.Z.; Zhang, C.; Wang, X.; Li, X.G.; Ippolito, S.J.; Kalantar-Zadeh, K.; Kaner, R.B. Carrier Mobility of Single-Walled Carbon Nanotube-Reinforced Polyaniline Nanofibers. J. Phys. Chem. C 2011, 115, 16187–16192. [Google Scholar] [CrossRef]
- Chen, P.C.; Sukcharoenchoke, S.; Ryu, K.; Arco, L.G.D.; Badmaev, A.; Wang, C.; Zhou, C. 2,4,6-Trinitrotoluene (TNT) Chemical Sensing Based on Aligned Single-Walled Carbon Nanotubes and ZnO Nanowires. Adv. Mater. 2010, 22, 1900–1904. [Google Scholar] [CrossRef] [PubMed]
Samples | Working Temperature | Concentration of NO2 (ppm) | Response | Response/Recovery Time | LOD (ppb) | Ref. |
---|---|---|---|---|---|---|
CVD-graphene | 200 °C | 100 ppb | ∼4% | 50/50 min | -- | [30] |
Graphene | 150 °C | 5 ppm | 7% | 10/30 min | -- | [31] |
Graphene/MoS2 | 150 °C | 5 ppm | 7% | 5/> 30 min | -- | [32] |
PbS CQDs | RT | 50 | 21.7 | 12/37s | 84 | [10] |
Graphene | -- | 50 | 24.7 | ∼500/2500s | 3600 | [33] |
RGO | RT | 5 | 11.5% | 420/1680s | 1000 | [34] |
MoTe2 | RT | 0.02 | 18% | 300/120s | 0.123 | [28] |
ZnO/m-SWCNT | RT | 2.5 | 52% | 208/> 208s | 2500 | [35] |
ZnO NR | 200 °C | 1 | 41% | 48/180s | 1000 | [36] |
RGO/SnO2 | 50 °C | 5 | 3.31 | 135/200s | 500 | [37] |
rGO/PNFs | RT | 0.5 | ∼68% | ∼150/300s | 17.5 | [5] |
CVD-graphene | RT | 5 | 12% | 1000/> 1 h | -- | [38] |
p-PANI/CNT | RT | 50 | 65.9 | 5.2/3.2s | 16.7 | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Cao, S.; Wu, Z.; Zhang, M.; Cao, Y.; Guo, J.; Zhong, F.; Duan, H.; Jia, D. High-Performance Gas Sensor of Polyaniline/Carbon Nanotube Composites Promoted by Interface Engineering. Sensors 2020, 20, 149. https://doi.org/10.3390/s20010149
Zhang W, Cao S, Wu Z, Zhang M, Cao Y, Guo J, Zhong F, Duan H, Jia D. High-Performance Gas Sensor of Polyaniline/Carbon Nanotube Composites Promoted by Interface Engineering. Sensors. 2020; 20(1):149. https://doi.org/10.3390/s20010149
Chicago/Turabian StyleZhang, Weiyu, Shuai Cao, Zhaofeng Wu, Min Zhang, Yali Cao, Jixi Guo, Furu Zhong, Haiming Duan, and Dianzeng Jia. 2020. "High-Performance Gas Sensor of Polyaniline/Carbon Nanotube Composites Promoted by Interface Engineering" Sensors 20, no. 1: 149. https://doi.org/10.3390/s20010149
APA StyleZhang, W., Cao, S., Wu, Z., Zhang, M., Cao, Y., Guo, J., Zhong, F., Duan, H., & Jia, D. (2020). High-Performance Gas Sensor of Polyaniline/Carbon Nanotube Composites Promoted by Interface Engineering. Sensors, 20(1), 149. https://doi.org/10.3390/s20010149