[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Conducting polymers in electronic chemical sensors

Abstract

Conducting organic polymers have found two main kinds of application in electronics so far: as materials for construction of various devices and as selective layers in chemical sensors. In either case, interaction with ambient gases is critical. It may compromise the performance of a device based on conducting polymers, whereas it is beneficial in a sensor. Conductivity has been the primary property of interest. Work function — related to conductivity, but in principle a different property — has received only scant attention. Our aim here is to discuss the usability of conducting polymers in both types of electronic applications in light of these two parameters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Open structure of polyaniline prepared by electropolymerization of 0.1 M aniline from aqueous solution of 2 M HBF4.
Figure 2: Chemiresistor.
Figure 3: Comparison between the work-function responses of conducting polymer layers to different vapours.
Figure 4: Conducting polymers in field-effect transistors.
Figure 5: A sensor array consisting of eight CHEMFETs.

Similar content being viewed by others

References

  1. McQuade, D.T., Pullen, A.E. & Swager, T.M. Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537–2574 (2000).

    Article  CAS  Google Scholar 

  2. Gerard, M., Chaubey, A. & Malhotra, B.D. Application of conducting polymers to biosensors. Biosens. Bioelectron. 17, 345–359 (2002).

    Article  CAS  Google Scholar 

  3. Dimitrakopoulos, Ch. D. & Malenfant, P.R.L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  Google Scholar 

  4. Dimitrakopoulos, C.D. & Mascaro, D.J. Organic thin-film transistors: a review of recent advances. IBM J. Res. Dev. 45, 11–27 (2001).

    Article  CAS  Google Scholar 

  5. Angelopoulos, M. Conducting polymers in microelectronics. IBM J. Res. Dev. 45, 57–75 (2001).

    Article  CAS  Google Scholar 

  6. Gazotti, W.A. et al. Handbook of Advanced Electronic and Photonic Materials and Devices Vol. 10 (ed. Nalva, H.S.) 53–98 (Academic, New York, 2001).

    Book  Google Scholar 

  7. Otero, T.F. in Polymer Sensors and Actuators (eds Osada, Y. & De Rossi, D.E.) 295–324 (Springer, Berlin, 2000).

    Book  Google Scholar 

  8. Bailey, R.A. & Persaud, K.C. in Polymer Sensors and Actuators (eds Osada, Y. & De Rossi, D.E.) 149–181 (Springer, Berlin, 2000).

    Book  Google Scholar 

  9. Huber, R.J. in Solid State Chemical Sensors (eds Janata., J. & Huber, R.J.) 119–162 (Academic, New York, 1985).

    Google Scholar 

  10. Leclerc, M. Optical and electrochemical transducers based on functionalized conjugated polymers. Adv. Mater. 11, 1491–1498 (1999).

    Article  CAS  Google Scholar 

  11. Milella, E. & Penza, M. SAW gas detection using Langmuir–Blodgett polypyrrole films. Thin Solid Films 329, 694–697 (1998).

    Article  Google Scholar 

  12. Hwang, B.J., Yang, J.Y. & Lin, C.W. Recognition of alcohol vapor molecules by simultaneous measurements of resistance changes on polypyrrole-based composite thin films and mass changes on piezoelectric crystal. Sens. Actuat. B 75, 67–75 (2001).

    Article  CAS  Google Scholar 

  13. Michalska, A. & Lewenstam, A. Potentiometric selectivity of p-doped polymer films. Anal. Chim. Acta 406, 159–169 (2000).

    Article  CAS  Google Scholar 

  14. Albert, K.J. et al. Cross-reactive chemical sensor arrays. Chem. Rev. 100, 2595–2626 (2000).

    Article  CAS  Google Scholar 

  15. Epstein, A.J. & Mele, E.J. (eds) Symposium proceedings 4–5 May 2000. Synth. Met. 125, 138 (2001).

    Google Scholar 

  16. Heeger, A.J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew. Chem. Int. Edn 40, 2591–2611 (2001).

    Article  CAS  Google Scholar 

  17. Nalwa, H.S. (ed.) Handbook of Organic Conductive Molecules and Polymers (Wiley, New York, 1997).

    Google Scholar 

  18. Leuninger, J. et al. Poly(phenylene sulfide-phenyleneamine) (PPSA): The first hybrid structure of poly(phenylene sulfide) and polyaniline. Macromol. 31, 1720–1727 (1998).

    Article  CAS  Google Scholar 

  19. Pron, A. & Rannou, P. Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog. Polym. Sci. 27, 135–190 (2002).

    Article  CAS  Google Scholar 

  20. Cabala, R., Meister, V. & Potje-Kamloth, K. Effect of composite doping on sensing properties of polypyrrole. J. Chem. Soc. Faraday Trans. 93, 131–137 (1997).

    Article  CAS  Google Scholar 

  21. MacDiarmid, A.G. & Epstein, A.J. Secondary doping in polyaniline. Synth. Met. 69, 85–92 (1995).

    Article  CAS  Google Scholar 

  22. Domansky, K., Li, J. & Janata, J. Selective doping of chemically sensitive layers on a multisensing chip. J. Electrochem. Soc. 144, 75–78 (1997).

    Article  Google Scholar 

  23. Josowicz, M., Li, H.S., Domansky, K. & Baer, D. Effect of palladium in polyaniline layers on selectivity to hydrogen. Electroanal. 11, 774–781 (1999).

    Article  CAS  Google Scholar 

  24. Li, J., Petelenz, D. & Janata, J. Suspended gate field-effect transistor sensitive to gaseous hydrogen cyanide. Electroanal. 5, 791–794 (1993).

    Article  CAS  Google Scholar 

  25. Hernandez-Perez, T., Morales, M., Batina, N. & Salmon, M. Effect of the electrosynthesis method on the surface morphology of the polypyrrole film an atomic force microscopy study. J. Electrochem. Soc. 148, 369–375 (2001).

    Article  Google Scholar 

  26. Patil, S., Mahajan, J.R., More, M.A. & Patil, P.P. Electrochemical synthesis of poly(o-methoxyaniline) thin films: effect of post treatment. Mater. Chem. Phys. 58, 31–36 (1999).

    Article  CAS  Google Scholar 

  27. Janata, J. Electrochemical sensors and their impedances: A tutorial. Crit. Rev. Anal. Chem. 32, 109–120 (2002).

    Article  CAS  Google Scholar 

  28. Zheng, W. et al. Effect of organic vapors on the molecular conformation of non-doped polyaniline. Synth. Met. 84, 63–64 (1997).

    Article  CAS  Google Scholar 

  29. Leising, G., Tasch, S. & Graupner, W. in Handbook of Conducting Polymers 2nd edn (eds Skotheim, T.A. Elsenbaumer, R.L. & Reynolds, J.R.) 854 (Marcel Dekker, New york, 1998).

    Google Scholar 

  30. Barsan, N. & Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001).

    Article  CAS  Google Scholar 

  31. Stussi, E., Stella, R. & De Rossi, D. Chemoresistive conducting polymer-based odour sensors: influence of thickness changes on their sensing properties. Sens. Actuat. B 43, 180–185 (1997).

    Article  CAS  Google Scholar 

  32. Li, G., Josowicz, M. & Janata, J. Electrochemical assembly of conducting polymer films on an insulating surface. Electrochem. Solid State 5, 5–8 (2002).

    Article  Google Scholar 

  33. Domansky, K., Leng, Y., Williams, C.C., Janata, J. & Petelenz, D. Appl. Phys. Lett. 63, 1513–1515 (1993).

    Article  CAS  Google Scholar 

  34. Wang, P.C., Huang, Z. & MacDiarmid, A.G. Critical dependency of the conductivity of polypyrrole and polyaniline films on the hydrophobicity/ hydrophilicity of the substrate surface. Synth. Met. 101, 852–853 (1999).

    Article  CAS  Google Scholar 

  35. Ogura, K., Tonosaki, T. & Shiigi, H. AC Impedance spectroscopy of a humidity sensor using poly(o-phenylenediamine)/poly(vinyl alcohol) composite film. J. Electrochem. Soc. 148, 21–27 (2001).

    Article  Google Scholar 

  36. Musio, F., Amrani, M.E.H. & Persaud, K.C.D. High-frequency AC investigation of conducting polymer gas sensors. Sens. Actuat. B 23, 223–226 (1995).

    Article  CAS  Google Scholar 

  37. Ingleby, P., Gardner, J.W. & Bartlett, P.N. Effect of micro-electrode geometry on response of thin-film poly(pyrrole) and poly(aniline) chemoresistive sensors. Sens. Actuat. B 57, 17–27 (1999).

    Article  CAS  Google Scholar 

  38. Casalini, R., Wilde, J.N., Nagel, J., Oertel, U. & Petty, M.C. Organic vapour sensing using thin films of a co-ordination polymer: comparison of electrical and optical techniques. Sens. Actuat. B 57, 28–34 (1999).

    Article  CAS  Google Scholar 

  39. Josowicz, M. & Janata, J. Suspended gate field-effect transistor modified with polypyrrole as alcohol sensor. Anal. Chem. 58, 514–517 (1986).

    Article  CAS  Google Scholar 

  40. Mulliken, R.S. New electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys. 2, 782–93 (1934).

    Article  CAS  Google Scholar 

  41. Janata, J. & Josowicz, M. A fresh look at some old principles: The Kelvin probe and the Nernst equation. Anal. Chem. 69, 293–296 (1997).

    Article  Google Scholar 

  42. Janata, J. & Josowicz, M. Chemical modulation of work function as a transduction mechanism for chemical sensors. Acc. Chem. Res. 31, 241–248 (1998).

    Article  CAS  Google Scholar 

  43. Janata, J. Chemical modulation of the electron work function. Anal. Chem. 63, 2546–2550 (1991).

    Article  CAS  Google Scholar 

  44. Blackwood, D. & Josowicz, M. Work function and spectroscopic studies of interactions between conducting polymers and organic vapors. J. Phys. Chem. 95, 493–502 (1991).

    Article  CAS  Google Scholar 

  45. Topart, P. & Josowicz, M. Characterization of the interaction between poly(pyrrole) films and methanol vapor. J. Phys.Chem. 96, 7824–7830 (1992); ibid Transient effects in the interaction between poly(pyrrole) and methanol vapor. 8662–8666.

    Article  CAS  Google Scholar 

  46. Potje-Kamloth, K. Chemical gas sensors based on organic semiconductor polypyrrole. Crit. Rev. Anal. Chem. 32, 121–140 (2002).

    Article  CAS  Google Scholar 

  47. MacDiarmid, A. Polyaniline and polypyrrole: where are we headed? Synth. Met. 84, 27–34 (1997).

    Article  CAS  Google Scholar 

  48. Hatchett, D.W, Josowicz, M. & Janata, J. Acid doping of polyaniline: spectroscopic and electrochemical studies. J. Phys. Chem. B. 103, 10992–10998 (1999).

    Article  CAS  Google Scholar 

  49. Li, G., Josowicz, M. & Janata, J. Electrochemical modulation of the electronic properties in conducting poly(phenylenesulfidephenyleneamine). Synth. Met. 125, 273–278 (2001).

    Article  Google Scholar 

  50. Potje-Kamloth, K, Polk, B.J., Josowicz, M. & Janata, J. Doping of polyaniline in solid-state with photogenerated triflic acid. Chem. Mater. 14, 2782–2787 (2002).

    Article  CAS  Google Scholar 

  51. Josowicz, M. & Janata, J. in Chemical Sensor Technology (ed. Seiyama, T.) 153–177 (Elsevier, New York, 1988).

    Book  Google Scholar 

  52. Gaponik, N.P., Shchukin, D.G., Kulak, A.I. & Sviridov, D.V. A polyaniline-based microelectrochemical transistor with an electrocatalytic gate. Mendeleev Commun. 7, 70–71 (1997).

    Article  Google Scholar 

  53. Covington, J.A., Gardner, J.W., Briand, D. & de Rooij, N.F. A polymer gate FET sensor array for detecting organic vapours. Sens. Actuat. B77, 155–162 (2001).

    Article  Google Scholar 

  54. Janata, J. Principles of Chemical Sensors 81–168 (Plenum, New York, 1989).

    Google Scholar 

  55. Polk, B.J., Potje-Kamloth, K., Josowicz, M. & Janata, J. Role of protonic and charge transfer doping in solid-state polyaniline. J. Phys. Chem. 106, 11457–11462 (2002).

    Article  CAS  Google Scholar 

  56. Polk, B.J., Smith, A.J., DeWeerth, S.P, Zhou, Z., Janata, J. & Domansky, K. Design of solid state array for simultaneous potentiometric and impedance sensing in gas phase. Electroanal. 11, 707–711 (1999).

    Article  CAS  Google Scholar 

  57. Sundgren, H., Lundstroem, I. & Vollmer, H. Chemical sensor arrays and abductive networks. Sens. Actuat. B 9, 127–131 (1992).

    Article  CAS  Google Scholar 

  58. Potje-Kamloth, K. in Handbook of Surfaces and Interfaces of Materials Vol. 5 (ed. Nalwa, H.S.) 445–494 (Academic, San Diego, 2001).

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation, grant no. CHE-9816017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Janata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janata, J., Josowicz, M. Conducting polymers in electronic chemical sensors. Nature Mater 2, 19–24 (2003). https://doi.org/10.1038/nmat768

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat768

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing