Single-Pixel Imaging Based on Deep Learning Enhanced Singular Value Decomposition
<p>(<b>a</b>) Schematic of the DCAN adapted from [<a href="#B35-sensors-24-02963" class="html-bibr">35</a>], which includes the encoding and decoding layers. (<b>b</b>) Diagram of the developed DLSVD framework, which consists of the encoding, decoding, and enhancing layers.</p> "> Figure 2
<p>(<b>a</b>) First three typical encoding patterns for the four SPI methods with different measurements of <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>512</mn> </mrow> </semantics></math>, 1024, and 2048. (<b>b</b>) Reconstructed images by the developed DLSVD with <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>512</mn> </mrow> </semantics></math>, 1024, and 2048.</p> "> Figure 3
<p>Three typical ground truth (GT) images taken from the ImageNet dataset, and reconstructed images by the four SPI methods with different measurements of <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>512</mn> </mrow> </semantics></math>, 1024, and 2048.</p> "> Figure 4
<p>(<b>a</b>) Extracted SSIMs and (<b>b</b>) PSNRs of the reconstructed images by the four SPI methods with different numbers of measurements as functions of the ambient noise. Error bars indicate standard deviations of the test set.</p> "> Figure 5
<p>Schematic of the experimental setup.</p> "> Figure 6
<p>Ground truth (GT) images taken from the reconstructed ones by the HSI method with full sampling ratio (<math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mi>N</mi> <mn>2</mn> </msup> </mrow> </semantics></math>) and experimentally reconstructed images by the four SPI methods with different measurements (<math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>512</mn> </mrow> </semantics></math>, 1024, 2048).</p> "> Figure 7
<p>Similar to <a href="#sensors-24-02963-f006" class="html-fig">Figure 6</a> but with different images.</p> "> Figure 8
<p>Ground truth (GT) images taken from the reconstructed ones by the HSI method with full sampling ratio (<math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mi>N</mi> <mn>2</mn> </msup> </mrow> </semantics></math>), and numerically reconstructed images by the four SPI methods with different measurements of <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>512</mn> </mrow> </semantics></math>, 1024, 2048. The values of SSIM and PSNR are extracted for each reconstructed image.</p> ">
Abstract
:1. Introduction
2. Theoretical Framework
3. Simulation Results
4. Experimental Demonstrations
5. Extension to Other Objects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Z.H.; Chen, W.; Penuelas, J.; Padgett, M.; Sun, M.J. 1000 fps computational ghost imaging using LED-based structured illumination. Opt. Express 2018, 26, 2427–2434. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Chen, H.; Yuan, Y.; Zheng, H.; Liu, J.; Xu, Z.; Zhou, Y. Ultrahigh-Speed Color Imaging with Single-Pixel Detectors at Low Light Level. Phys. Rev. Appl. 2019, 12, 034049. [Google Scholar] [CrossRef]
- Jin, S.; Hui, W.; Wang, Y.; Huang, K.; Shi, Q.; Ying, C.; Liu, D.; Ye, Q.; Zhou, W.; Tian, J. Hyperspectral imaging using the single-pixel Fourier transform technique. Sci. Rep. 2017, 7, 45209. [Google Scholar] [CrossRef] [PubMed]
- Amiot, C.; Ryczkowski, P.; Friberg, A.T.; Dudley, J.M.; Genty, G. Supercontinuum spectral-domain ghost imaging. Opt. Lett. 2018, 43, 5025–5028. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Liu, Z.; Wang, C.; Hu, C.; Li, E.; Gong, W.; Tong, Z.; Wu, J.; Shen, X.; Han, S. Ghost imaging LiDAR via sparsity constraints using push-broom scanning. Opt. Express 2019, 27, 13219–13228. [Google Scholar] [CrossRef]
- Sun, S.; Lin, H.; Xu, Y.; Gu, J.; Liu, W. Tracking and imaging of moving objects with temporal intensity difference correlation. Opt. Express 2019, 27, 27851–27861. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Edgar, M.P.; Bowman, R.; Vittert, L.E.; Welsh, S.; Bowman, A.; Padgett, M.J. 3D Computational Imaging with Single-Pixel Detectors. Science 2013, 340, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, E.; Gong, W.; Han, S. Structured image reconstruction for three-dimensional ghost imaging lidar. Opt. Express 2015, 23, 14541–14551. [Google Scholar] [CrossRef]
- Gibson, G.M.; Johnson, S.D.; Padgett, M.J. Single-pixel imaging 12 years on: A review. Opt. Express 2020, 28, 28190–28208. [Google Scholar] [CrossRef]
- Edgar, M.P.; Gibson, G.M.; Padgett, M.J. Principles and prospects for single-pixel imaging. Nat. Photonics 2019, 13, 13–20. [Google Scholar] [CrossRef]
- Sun, M.J.; Zhang, J.M. Single-Pixel Imaging and Its Application in Three-Dimensional Reconstruction: A Brief Review. Sensors 2019, 19, 732. [Google Scholar] [CrossRef] [PubMed]
- She, R.; Liu, W.; Lu, Y.; Zhou, Z.; Li, G. Fourier single-pixel imaging in the terahertz regime. Appl. Phys. Lett. 2019, 115, 021101. [Google Scholar] [CrossRef]
- She, R.B.; Liu, W.Q.; Wei, G.L.; Lu, Y.F.; Li, G.Y. Terahertz Single-Pixel Imaging Improved by Using Silicon Wafer with SiO2 Passivation. Appl. Sci. 2020, 10, 2427. [Google Scholar] [CrossRef]
- Zhu, Y.; She, R.; Liu, W.; Lu, Y.; Li, G. Deep Learning Optimized Terahertz Single-Pixel Imaging. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 165–172. [Google Scholar] [CrossRef]
- Deng, Y.; She, R.; Liu, W.; Lu, Y.; Li, G. High-efficiency terahertz single-pixel imaging based on a physics-enhanced network. Opt. Express 2023, 31, 10273–10286. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.M.; Sun, B.; Edgar, M.P.; Phillips, D.B.; Hempler, N.; Maker, G.T.; Malcolm, G.P.A.; Padgett, M.J. Real-time imaging of methane gas leaks using a single-pixel camera. Opt. Express 2017, 25, 2998–3005. [Google Scholar] [CrossRef]
- Zeng, B.; Huang, Z.; Singh, A.; Yao, Y.; Azad, A.K.; Mohite, A.D.; Taylor, A.J.; Smith, D.R.; Chen, H.T. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl. 2018, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Gattinger, P.; Kilgus, J.; Zorin, I.; Langer, G.; Nikzad-Langerodi, R.; Rankl, C.; Gröschl, M.; Brandstetter, M. Broadband near-infrared hyperspectral single pixel imaging for chemical characterization. Opt. Express 2019, 27, 12666–12672. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, K.; Fang, J.; Yan, M.; Wu, E.; Zeng, H. Mid-infrared single-pixel imaging at the single-photon level. Nat. Commun. 2023, 14, 1073. [Google Scholar] [CrossRef] [PubMed]
- Schori, A.; Shwartz, S. X-ray ghost imaging with a laboratory source. Opt. Express 2017, 25, 14822–14828. [Google Scholar] [CrossRef] [PubMed]
- Klein, Y.; Schori, A.; Dolbnya, I.P.; Sawhney, K.; Shwartz, S. X-ray computational ghost imaging with single-pixel detector. Opt. Express 2019, 27, 3284–3293. [Google Scholar] [CrossRef]
- He, Y.H.; Zhang, A.X.; Li, M.F.; Huang, Y.Y.; Quan, B.G.; Li, D.Z.; Wu, L.A.; Chen, L.M. High-resolution sub-sampling incoherent x-ray imaging with a single-pixel detector. APL Photonics 2020, 5, 056102. [Google Scholar] [CrossRef]
- Olbinado, M.P.; Paganin, D.M.; Cheng, Y.; Rack, A. X-ray phase-contrast ghost imaging using a single-pixel camera. Optica 2021, 8, 1538–1544. [Google Scholar] [CrossRef]
- Duarte, M.F.; Davenport, M.A.; Takhar, D.; Laska, J.N.; Sun, T.; Kelly, K.F.; Baraniuk, R.G. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 2008, 25, 83–91. [Google Scholar] [CrossRef]
- Sun, M.J.; Meng, L.T.; Edgar, M.P.; Padgett, M.J.; Radwell, N. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging. Sci. Rep. 2017, 7, 3464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ma, X.; Zhong, J. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun. 2015, 6, 6225. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, S.; Yao, X.R.; Zhao, Q.; Liu, X.F.; Liu, B.; Zhai, G.J. Discrete cosine single-pixel microscopic compressive imaging via fast binary modulation. Opt. Commun. 2020, 454, 124512. [Google Scholar] [CrossRef]
- Rousset, F.; Ducros, N.; Farina, A.; Valentini, G.; Andrea, C.D.; Peurin, F. Adaptive Basis Scan by Wavelet Prediction for Single-Pixel Imaging. IEEE Trans. Comput. Imaging 2017, 3, 36–46. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zheng, G.; Zhong, J. Hadamard single-pixel imaging versus Fourier single-pixel imaging. Opt. Express 2017, 25, 19619–19639. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zheng, G.; Zhong, J. Fast Fourier single-pixel imaging via binary illumination. Sci. Rep. 2017, 7, 12029. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.; Cao, J.; Zhang, K.Y.; Hao, Q. Deringing and denoising in extremely under-sampled Fourier single pixel imaging. Opt. Express 2020, 28, 7360–7374. [Google Scholar] [CrossRef] [PubMed]
- Jacome, R.; Gomez, P.; Arguello, H. Middle output regularized end-to-end optimization for computational imaging. Optica 2023, 10, 1421–1431. [Google Scholar] [CrossRef]
- Lyu, M.; Wang, W.; Wang, H.; Wang, H.; Li, G.; Chen, N.; Situ, G. Deep-learning-based ghost imaging. Sci. Rep. 2017, 7, 17865. [Google Scholar] [CrossRef]
- He, Y.; Wang, G.; Dong, G.; Zhu, S.; Chen, H.; Zhang, A.; Xu, Z. Ghost Imaging Based on Deep Learning. Sci. Rep. 2018, 8, 6469. [Google Scholar] [CrossRef]
- Higham, C.F.; Murray-Smith, R.; Padgett, M.J.; Edgar, M.P. Deep learning for real-time single-pixel video. Sci. Rep. 2018, 8, 2369. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.; Cao, J.; Zhang, K.; Hao, Q. Improving Imaging Quality of Real-time Fourier Single-pixel Imaging via Deep learning. Sensors 2019, 19, 4190. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wang, F.; Zhang, X.; Jin, Y.; Situ, G. Learning-based adaptive under-sampling for Fourier single-pixel imaging. Opt. Lett. 2023, 48, 2985–2988. [Google Scholar] [CrossRef]
- Stantchev, R.I.; Li, K.; Pickwell-MacPherson, E. Rapid Imaging of Pulsed Terahertz Radiation with Spatial Light Modulators and Neural Networks. ACS Photonics 2021, 8, 3150–3155. [Google Scholar] [CrossRef]
- Jiang, W.; Li, X.; Peng, X.; Sun, B. Imaging high-speed moving targets with a single-pixel detector. Opt. Express 2020, 28, 7889–7897. [Google Scholar] [CrossRef]
- Yao, M.; Zheng, S.; Hu, Y.; Zhang, Z.; Peng, J.; Zhong, J. Single-Pixel Moving Object Classification with Differential Measuring in Transform Domain and Deep Learning. Photonics 2022, 9, 202. [Google Scholar] [CrossRef]
- Wang, F.; Bian, Y.; Wang, H.; Lyu, M.; Pedrini, G.; Osten, W.; Barbastathis, G.; Situ, G. Phase imaging with an untrained neural network. Light Sci. Appl. 2020, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Mur, A.L.; Leclerc, P.; Peyrin, F.; Ducros, N. Single-pixel image reconstruction from experimental data using neural networks. Opt. Express 2021, 29, 17097–17110. [Google Scholar] [CrossRef] [PubMed]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.; Deng, C.; Han, S.; Situ, G. Single-pixel imaging using physics enhanced deep learning. Photonics Res. 2022, 10, 104–110. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, X.; Yang, X.; Wang, Y.; Yin, Y.; Li, X.; Peng, X.; He, W.; Dong, G.; Chen, H. Singular value decomposition ghost imaging. Opt. Express 2018, 26, 12948–12958. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Tang, J.; Zhou, J.; Wei, S. Singular value decomposition compressed ghost imaging. Appl. Phys. B-Lasers Opt. 2022, 128, 47. [Google Scholar] [CrossRef]
- Chen, L.Y.; Wang, C.; Xiao, X.Y.; Ren, C.; Zhang, D.J.; Li, Z.; Cao, D.Z. Denoising in SVD-based ghost imaging. Opt. Express 2022, 30, 6248–6257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhou, J.; Tang, J.; Wu, F.; Cheng, H.; Wei, S. Deep unfolding for singular value decomposition compressed ghost imaging. Appl. Phys. B-Lasers Opt. 2022, 128, 185. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Granada, Spain, 20 September 2018; pp. 3–11. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Ye, Z.; Qiu, P.; Wang, H.; Xiong, J.; Wang, K. Image watermarking and fusion based on Fourier single-pixel imaging with weighed light source. Opt. Express 2019, 27, 36505–36523. [Google Scholar] [CrossRef] [PubMed]
Measurement | Method | MotorVehicleOnly | HonkingNeeded | StopAndGiveWay | |||
---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | ||
512 | HSI | 20.1253 | 0.53283 | 20.6722 | 0.57780 | 19.7786 | 0.61145 |
DCAN | 21.0788 | 0.58489 | 19.5797 | 0.64094 | 21.3627 | 0.71429 | |
PIDL | 22.0191 | 0.61181 | 24.2339 | 0.69649 | 21.8639 | 0.74317 | |
DLSVD | 22.9014 | 0.61631 | 24.1765 | 0.68647 | 22.1056 | 0.73374 | |
1024 | HSI | 20.3322 | 0.59922 | 21.4309 | 0.67247 | 21.3050 | 0.70870 |
DCAN | 22.0833 | 0.60743 | 20.5035 | 0.66592 | 21.1787 | 0.72877 | |
PIDL | 20.5111 | 0.64055 | 24.1897 | 0.71953 | 23.9761 | 0.80488 | |
DLSVD | 23.2049 | 0.67249 | 26.0226 | 0.72825 | 23.7735 | 0.80481 | |
2048 | HSI | 20.9976 | 0.65599 | 22.2591 | 0.71135 | 23.2266 | 0.75675 |
DCAN | 21.0548 | 0.64711 | 24.0583 | 0.68543 | 21.5286 | 0.76694 | |
PIDL | 21.8962 | 0.69455 | 24.7208 | 0.74637 | 24.0713 | 0.83182 | |
DLSVD | 25.2250 | 0.72340 | 26.4219 | 0.76075 | 25.8388 | 0.84479 |
Measurement | Method | Letters | Cartoon | Numbers | |||
---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | ||
512 | HSI | 17.5826 | 0.56131 | 16.9197 | 0.59388 | 16.0013 | 0.47396 |
DCAN | 19.7788 | 0.64395 | 17.5172 | 0.64073 | 18.1696 | 0.63210 | |
PIDL | 22.8670 | 0.81414 | 21.2027 | 0.73906 | 22.8670 | 0.81414 | |
DLSVD | 21.2067 | 0.78155 | 19.8713 | 0.75833 | 19.5516 | 0.74773 | |
1024 | HSI | 18.3033 | 0.67054 | 17.5807 | 0.62975 | 17.8698 | 0.63145 |
DCAN | 18.8146 | 0.66670 | 19.6356 | 0.68764 | 19.5911 | 0.67321 | |
PIDL | 21.5432 | 0.80972 | 21.3974 | 0.78457 | 23.8122 | 0.82897 | |
DLSVD | 21.9517 | 0.80432 | 21.0732 | 0.76606 | 23.0244 | 0.82127 | |
2048 | HSI | 20.1011 | 0.71247 | 17.8595 | 0.68960 | 18.4002 | 0.69709 |
DCAN | 15.1268 | 0.65279 | 18.9868 | 0.70492 | 19.6354 | 0.70037 | |
PIDL | 24.6053 | 0.83956 | 23.5365 | 0.80241 | 24.6324 | 0.83752 | |
DLSVD | 26.1652 | 0.84154 | 24.1226 | 0.85901 | 25.1278 | 0.86156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; She, R.; Liu, W.; Lu, Y.; Li, G. Single-Pixel Imaging Based on Deep Learning Enhanced Singular Value Decomposition. Sensors 2024, 24, 2963. https://doi.org/10.3390/s24102963
Deng Y, She R, Liu W, Lu Y, Li G. Single-Pixel Imaging Based on Deep Learning Enhanced Singular Value Decomposition. Sensors. 2024; 24(10):2963. https://doi.org/10.3390/s24102963
Chicago/Turabian StyleDeng, Youquan, Rongbin She, Wenquan Liu, Yuanfu Lu, and Guangyuan Li. 2024. "Single-Pixel Imaging Based on Deep Learning Enhanced Singular Value Decomposition" Sensors 24, no. 10: 2963. https://doi.org/10.3390/s24102963
APA StyleDeng, Y., She, R., Liu, W., Lu, Y., & Li, G. (2024). Single-Pixel Imaging Based on Deep Learning Enhanced Singular Value Decomposition. Sensors, 24(10), 2963. https://doi.org/10.3390/s24102963