[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Singular value decomposition compressed ghost imaging

  • Published:
Applied Physics B Aims and scope Submit manuscript

A Correction to this article was published on 28 March 2022

This article has been updated

Abstract

Compressed ghost imaging method can effectively reduce the number of measurements required for ghost imaging reconstruction. The non-negative characteristics of measurement matrix in compressed ghost imaging method is inconsistent with the requirements of the measurement matrix in traditional compressed sensing theory, leading to low quality reconstruction. Aiming at the point, this paper proposes a singular value decomposition compressed ghost imaging method to improve the reconstruction quality of ghost imaging. First, the singular value decomposition is performed on the measurement matrix, and then the optimized measurement matrix and measurements are obtained, finally the reconstruction of the image is completed by the reconstruction algorithm. Numerical simulation experiments verify the superiority of our proposed singular value decomposition compressed ghost imaging method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. M. D’Angelo, A. Valencia, M.H. Rubin et al., Resolution of quantum and classical ghost imaging. Phys. Rev. A 72(1), 013810 (2005)

    Article  ADS  Google Scholar 

  2. B.I. Erkmen, J.H. Shapiro, Ghost imaging: from quantum to classical to computational. Adv. Opt. Photon. 2(4), 405–450 (2010)

    Article  Google Scholar 

  3. J.H. Shapiro, Computational ghost imaging. Phys. Rev. A 78(6), 061802 (2008)

    Article  ADS  Google Scholar 

  4. T.B. Pittman, Y.H. Shih, D.V. Strekalov et al., Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52(5), R3429 (1995)

    Article  ADS  Google Scholar 

  5. D.V. Strekalov, A.V. Sergienko, D.N. Klyshko et al., Observation of two-photon “ghost” interference and diffraction. Phys. Rev. Lett. 74(18), 3600 (1995)

    Article  ADS  Google Scholar 

  6. R.S. Bennink, S.J. Bentley, R.W. Boyd, “Two-photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89(11), 113601 (2002)

    Article  ADS  Google Scholar 

  7. D. Shi, C. Fan, P. Zhang et al., Adaptive optical ghost imaging through atmospheric turbulence. Opt. Express 20(27), 27992–27998 (2012)

    Article  ADS  Google Scholar 

  8. W.K. Yu, S. Li, X.R. Yao et al., Protocol based on compressed sensing for high-speed authentication and cryptographic key distribution over a multiparty optical network. Appl. Opt. 52(33), 7882–7888 (2013)

    Article  ADS  Google Scholar 

  9. C. Hao, W. Gong, M. Chen et al., Ghost imaging lidar via sparsity constraints. Appl. Phys. Lett. 101(14), 141123 (2012)

    Article  ADS  Google Scholar 

  10. X.F. Liu, X.R. Yao, X.H. Chen et al., Thermal light optical coherence tomography for transmissive objects. JOSA A 29(9), 1922–1926 (2012)

    Article  ADS  Google Scholar 

  11. S. Jiao, J. Feng, Y. Gao, T. Lei, Z. Xie, X. Yuan, Optical machine learning with incoherent light and a single-pixel detector. Opt. Lett. 44(21), 5186–5189 (2019)

    Article  ADS  Google Scholar 

  12. Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, S. Du, All-optical neural network with nonlinear activation functions. Optica 6(9), 1132–1137 (2019)

    Article  ADS  Google Scholar 

  13. W.K. Yu, M.F. Li, X.R. Yao et al., Adaptive compressive ghost imaging based on wavelet trees and sparse representation. Opt. Express 22(6), 7133–7144 (2014)

    Article  ADS  Google Scholar 

  14. F. Ferri, D. Magatti, L.A. Lugiato et al., Differential ghost imaging. Phys. Rev. Lett. 104(25), 253603 (2010)

    Article  ADS  Google Scholar 

  15. M.F. Li, Y.R. Zhang, K.H. Luo et al., Time-correspondence differential ghost imaging. Phys. Rev. A 87(3), 033813 (2013)

    Article  ADS  Google Scholar 

  16. B. Sun, S.S. Welsh, M.P. Edgar et al., Normalized ghost imaging. Opt. Express 20(15), 16892–16901 (2012)

    Article  ADS  Google Scholar 

  17. O. Katz, Y. Bromberg, Y. Silberberg, Compressive ghost imaging. Appl. Phys. Lett. 95(13), 131110 (2009)

    Article  ADS  Google Scholar 

  18. P. Zerom, K.W.C. Chan, J.C. Howell et al., Entangled-photon compressive ghost imaging. Phys. Rev. A 84(6), 061804 (2011)

    Article  ADS  Google Scholar 

  19. V. Katkovnik, J. Astola, Compressive sensing computational ghost imaging. JOSA A 29(8), 1556–1567 (2012)

    Article  ADS  Google Scholar 

  20. M. Aβmann, M. Bayer, Compressive adaptive computational ghost imaging. Sci. Rep. 3, 1545 (2013)

    Article  ADS  Google Scholar 

  21. C. Zhang, S. Guo, J. Cao et al., Object reconstitution using pseudo-inverse for ghost imaging. Opt. Express 22(24), 30063–30073 (2014)

    Article  ADS  Google Scholar 

  22. W. Gong, High-resolution pseudo-inverse ghost imaging. Photon. Res. 3(5), 234–237 (2015)

    Article  Google Scholar 

  23. X. Zhang, X. Meng, X. Yang et al., Singular value decomposition ghost imaging. Opt. Express 26(10), 12948–12958 (2018)

    Article  ADS  Google Scholar 

  24. X. Shi, X. Huang, S. Nan et al., Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method. Laser Phys. Lett. 15(4), 045204 (2018)

    Article  ADS  Google Scholar 

  25. Y.C. Pati, R. Rezaiifar, P.S. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proceedings of 27th Asilomar conference on signals, systems and computers. IEEE, pp. 40–44 1993

  26. E.C. Marques, N. Maciel, L. Naviner et al., A review of sparse recovery algorithms. IEEE Access 7, 1300–1322 (2018)

    Article  Google Scholar 

  27. E.J. Candès, The restricted isometry property and its implications for compressed sensing. Comptes Rendus Math. 346(9–10), 589–592 (2008)

    Article  MathSciNet  Google Scholar 

  28. E.J. Candès, Y. Plan, A probabilistic and RIPless theory of compressed sensing. IEEE Trans. Inf. Theory 57(11), 7235–7254 (2011)

    Article  MathSciNet  Google Scholar 

  29. E. Candès, J. Romberg, Sparsity and incoherence in compressive sampling. Inverse Probl. 23(3), 969 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project was supported by the Natural Science Foundation of Anhui Province (No. 2008085MF209), the Major Natural Science Foundation of Higher Education Institutions of Anhui Province (Nos. KJ2019ZD04, KJ2020ZD02), and Open Research Fund of Advanced Laser Technology Laboratory of Anhui Province (AHL2020KF05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Tang, J., Zhou, J. et al. Singular value decomposition compressed ghost imaging. Appl. Phys. B 128, 47 (2022). https://doi.org/10.1007/s00340-022-07768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07768-0

Navigation