[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Principles and prospects for single-pixel imaging

Abstract

Modern digital cameras employ silicon focal plane array (FPA) image sensors featuring millions of pixels. However, it is possible to make a camera that only needs one pixel. In these cameras a spatial light modulator, placed before or after the object to be imaged, applies a time-varying pattern and synchronized intensity measurements are made with a single-pixel detector. The principle of compressed sensing then allows an image to be generated. As the approach suits a wide a variety of detector technologies, images can be collected at wavelengths outside the reach of FPA technology or at high frame rates or in three dimensions. Promising applications include the visualization of hazardous gas leaks and 3D situation awareness for autonomous vehicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Computational imaging configurations.
Fig. 2: Evaluating regularized and non-regularized image reconstructions with compressive sensing.
Fig. 3: The experimental landscape for single-pixel imaging systems spanning wavelength spectrum and application area.
Fig. 4: Real-time imaging of methane gas leaks using a single-pixel camera.
Fig. 5: 3D imaging experimental results.

Similar content being viewed by others

References

  1. Baird, J. L. Apparatus for transmitting views or images to a distance. US patent 1,699,270 (1929).

  2. Goldberg, E. Nipkow disk for television. US patent 1,973,203 (1934).

  3. Sen, P. et al. Dual photography. ACM Trans. Graph. 24, 745–755 (2005).

    Article  MathSciNet  Google Scholar 

  4. Duarte, M. F. et al. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25, 83–91 (2008).

    Article  ADS  Google Scholar 

  5. Welsh, S. S. et al. Fast full-color computational imaging with single-pixel detectors. Opt. Express 21, 23068–23074 (2013).

    Article  ADS  Google Scholar 

  6. Bian, L. et al. Multispectral imaging using a single bucket detector. Sci. Rep. 6, 24752 (2016).

    Article  ADS  Google Scholar 

  7. Rousset, F. et al. Time-resolved multispectral imaging based on an adaptive single-pixel camera. Opt. Express 26, 10550–10558 (2018).

    Article  ADS  Google Scholar 

  8. Zhang, Z. et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements. Optica 5, 315–319 (2018).

    Article  ADS  Google Scholar 

  9. Studer, V. et al. Compressive fluorescence microscopy for biological and hyperspectral imaging. Proc. Natl Acad. Sci. USA 109, E1679–E1687 (2012).

    Article  Google Scholar 

  10. Hahn, J., Debes, C., Leigsnering, M. & Zoubir, A. M. Compressive sensing and adaptive direct sampling in hyperspectral imaging. Digit. Signal Process. 26, 113–126 (2014).

    Article  Google Scholar 

  11. Edgar, M. P. et al. Simultaneous real-time visible and infrared video with single-pixel detectors. Sci. Rep. 5, 10669 (2015).

    Article  ADS  Google Scholar 

  12. Chan, W. L. et al. A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett. 93, 121105 (2008).

    Article  ADS  Google Scholar 

  13. Watts, C. M. et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photon. 8, 605–609 (2014).

    Article  ADS  Google Scholar 

  14. Stantchev, R. I. et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci. Adv. 2, e1600190 (2016).

    Article  ADS  Google Scholar 

  15. Gibson, G. M. et al. Real-time imaging of methane gas leaks using a single-pixel camera. Opt. Express 25, 2998–3005 (2017).

    Article  ADS  Google Scholar 

  16. Radwell, N. et al. Single-pixel infrared and visible microscope. Optica 1, 285–289 (2014).

    Article  Google Scholar 

  17. Zhang, Y. et al. 3D single-pixel video. J. Opt. 18, 035203 (2016).

    Article  Google Scholar 

  18. Goldstein, T., Xu, L., Kelly, K. F. & Baraniuk, R. The STOne transform: multi-resolution image enhancement and compressive video. IEEE Trans. Image Process. 24, 5581–5593 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  19. Zhang, Z., Wang, X., Zheng, G. & Zhong, J. Fast Fourier single-pixel imaging via binary illumination. Sci. Rep. 7, 12029 (2017).

    Article  ADS  Google Scholar 

  20. Higham, C. F., Murray-Smith, R., Padgett, M. J. & Edgar, M. P. Deep learning for real-time single-pixel video. Sci. Rep. 8, 2369 (2018).

    Article  ADS  Google Scholar 

  21. Zheng, J. & Jacobs, E. L. Video compressive sensing using spatial domain sparsity. Opt. Eng. 48, 087006 (2009).

    Article  ADS  Google Scholar 

  22. Sankaranarayanan, A. C., Studer, C. & Baraniuk, R. G. CS-MUVI: video compressive sensing for spatial-multiplexing cameras. In Computational Photography 1–10 (IEEE, 2012).

  23. Xu, L. et al. Multi-scale compressive video acquisition. In Imaging and Applied Optics CW2C.4 (OSA, 2013).

  24. Wu, Y., Ye, P., Mirza, I. O., Arce, G. R. & Prather, D. W. Experimental demonstration of an optical-sectioning compressive sensing microscope (CSM). Opt. Express 18, 24565–24578 (2010).

    Article  ADS  Google Scholar 

  25. Sun, B. et al. 3D computational imaging with single-pixel detectors. Science 340, 844–847 (2013).

    Article  ADS  Google Scholar 

  26. Howland, G. A., Dixon, P. B. & Howell, J. C. Photon-counting compressive sensing laser radar for 3D imaging. Appl. Opt. 50, 5917–5920 (2011).

    Article  ADS  Google Scholar 

  27. Howland, G. A., Lum, D. J., Ware, M. R. & Howell, J. C. Photon counting compressive depth mapping. Opt. Express 21, 23822–23837 (2013).

    Article  ADS  Google Scholar 

  28. Sun, M.-J., Edgar, M. P., Phillips, D. B., Gibson, G. M. & Padgett, M. J. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning. Opt. Express 24, 10476–10485 (2016).

    Article  ADS  Google Scholar 

  29. Edgar, M. P. et al. Real-time 3D video utilizing a compressed sensing time-of-flight single-pixel camera. In Optical Trapping and Optical Micromanipulation XIII Vol. 9922, 99221B (SPIE, 2016).

  30. Zhang, Z. & Zhong, J. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels. Opt. Lett. 41, 2497–2500 (2016).

    Article  ADS  Google Scholar 

  31. Durán, V., Clemente, P., Fernández-Alonso, M., Tajahuerce, E. & Lancis, J. Single-pixel polarimetric imaging. Opt. Lett. 37, 824–826 (2012).

    Article  ADS  Google Scholar 

  32. Soldevila, F. et al. Single-pixel polarimetric imaging spectrometer by compressive sensing. Appl. Phys. B 113, 551–558 (2013).

    Article  ADS  Google Scholar 

  33. Welsh, S. S., Edgar, M. P., Bowman, R., Sun, B. & Padgett, M. J. Near video-rate linear Stokes imaging with single-pixel detectors. J. Opt. 17, 025705 (2015).

    Article  ADS  Google Scholar 

  34. Tajahuerce, E. et al. Image transmission through dynamic scattering media by single-pixel photodetection. Opt. Express 22, 16945–16955 (2014).

    Article  ADS  Google Scholar 

  35. Durán, V. et al. Compressive imaging in scattering media. Opt. Express 23, 14424–14433 (2015).

    Article  ADS  Google Scholar 

  36. Greenberg, J., Krishnamurthy, K. & Brady, D. Compressive single-pixel snapshot x-ray diffraction imaging. Opt. Lett. 39, 111–114 (2014).

    Article  ADS  Google Scholar 

  37. Huynh, N. et al. Single-pixel optical camera for video rate ultrasonic imaging. Optica 3, 26–29 (2016).

    Article  Google Scholar 

  38. Yang, J. et al. Motionless volumetric photoacoustic microscopy with spatially invariant resolution. Nat. Commun. 8, 780 (2017).

    Article  ADS  Google Scholar 

  39. Clemente, P. et al. Compressive holography with a single-pixel detector. Opt. Lett. 38, 2524–2527 (2013).

    Article  ADS  Google Scholar 

  40. Soldevila, F., Durán, V., Clemente, P., Lancis, J. & Tajahuerce, E. Phase imaging by spatial wavefront sampling. Optica 5, 164–174 (2018).

    Article  Google Scholar 

  41. Haldar, J. P., Hernando, D. & Liang, Z.-P. Compressed-sensing MRI with random encoding. IEEE Trans. Med. Imaging 30, 893–903 (2011).

    Article  Google Scholar 

  42. Lochocki, B. et al. Single pixel camera ophthalmoscope. Optica 3, 1056–1059 (2016).

    Article  Google Scholar 

  43. Ota, S. et al. Ghost cytometry. Science 360, 1246–1251 (2018).

    Article  ADS  Google Scholar 

  44. Guo, Q. et al. Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition. Opt. Express 23, 29639–29646 (2015).

    Article  ADS  Google Scholar 

  45. Xu, Z.-H., Chen, W., Penuelas, J., Padgett, M. & Sun, M.-J. 1000 fps computational ghost imaging using LED-based structured illumination. Opt. Express 26, 2427–2434 (2018).

    Article  ADS  Google Scholar 

  46. Yu, W.-K. et al. Complementary compressive imaging for the telescopic system. Sci. Rep. 4, 5834 (2014).

    Article  Google Scholar 

  47. Gong, W. et al. Three-dimensional ghost imaging lidar via sparsity constraint. Sci. Rep. 6, 26133 (2016).

    Article  ADS  Google Scholar 

  48. Sampsell, J. B. Digital micromirror device and its application to projection displays. J. Vac. Sci. Technol. B 12, 3242–3246 (1994).

    Article  Google Scholar 

  49. Sun, M.-J. et al. Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun. 7, 12010 (2016).

    Article  ADS  Google Scholar 

  50. Phillips, D. B. et al. Adaptive foveated single-pixel imaging with dynamic super-sampling. Sci. Adv. 3, e1601782 (2017).

    Article  ADS  Google Scholar 

  51. Shapiro, J. H. Computational ghost imaging. Phys. Rev. A 78, 061802 (2008).

    Article  ADS  Google Scholar 

  52. Jiang, H., Huang, G. & Wilford, P. Multi-view in lensless compressive imaging. In 2013 Picture Coding Symposium 41–44 (IEEE, 2013).

  53. Herman, M. A., Tidman, J., Hewitt, D., Weston, T. & McMackin, L. A higher-speed compressive sensing camera through multi-diode design. In Compressive Sensing II Vol. 8717, 871706 (International Society for Optics and Photonics, 2013).

  54. Mackenzie, D. What’s Happening in the Mathematical Sciences Vol. 7 (American Mathematical Society, 2009).

  55. Aravind, R., Cash, G. L. & Worth, J. P. On implementing the JPEG still-picture compression algorithm. In Visual Communications and Image Processing IV Vol. 1199, 799–808 (SPIE, 1989).

  56. Shannon, C. Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  57. Candes, E. J. & Tao, T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52, 5406–5425 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  58. Sen, P. et al. Dual photography. In ACM SIGGRAPH 2005 Papers SIGGRAPH ’05 745–755 (ACM, New York, 2005).

  59. Candès, E. & Romberg, J. Sparsity and incoherence in compressive sampling. Inverse Problems 23, 969 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Donoho, D. L. & Stark, P. B. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49, 906–931 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Donoho, D. L. & Logan, B. F. Signal recovery and the large sieve. SIAM J. Appl. Math. 52, 577–591 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  62. Rudin, L. I., Osher, S. & Fatemi, E. Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Goldluecke, B. & Cremers, D. Introducing total curvature for image processing. In 2011 IEEE Int. Conf. Computer Vision (ICCV) 1267–1274 (IEEE, 2011).

  64. Pratt, W. K., Kane, J. & Andrews, H. C. Hadamard transform image coding. Proc. IEEE 57, 58–68 (1969).

    Article  Google Scholar 

  65. Sloane, N. J. A. & Harwit, M. Masks for Hadamard transform optics, and weighing designs. Appl. Opt. 15, 107–114 (1976).

    Article  ADS  Google Scholar 

  66. Zhang, Z., Ma, X. & Zhong, J. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun. 6, 6225 (2015).

    Article  ADS  Google Scholar 

  67. Aβmann, M. & Bayer, M. Compressive adaptive computational ghost imaging. Sci. Rep. 3, 1545 (2013).

    Article  ADS  Google Scholar 

  68. Soldevila, F., Salvador-Balaguer, E., Clemente, P., Tajahuerce, E. & Lancis, J. High-resolution adaptive imaging with a single photodiode. Sci. Rep. 5, 14300 (2015).

    Article  ADS  Google Scholar 

  69. Rousset, F. et al. Adaptive basis scan by wavelet prediction for single-pixel imaging. IEEE Trans. Comput. Imaging 3, 36–46 (2017).

    Article  MathSciNet  Google Scholar 

  70. Czajkowski, K. M., Pastuszczak, A. & Kotyński, R. Real-time single-pixel video imaging with Fourier domain regularization. Opt. Express 26, 20009–20022 (2018).

    Article  ADS  Google Scholar 

  71. Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  72. Noor, I. & Jacobs, E. L. Adaptive compressive sensing algorithm for video acquisition using a single-pixel camera. J. Electron. Imaging 22, 021013 (2013).

    Article  ADS  Google Scholar 

  73. Howland, G. A., Lum, D. J. & Howell, J. C. Compressive wavefront sensing with weak values. Opt. Express 22, 18870–18880 (2014).

    Article  ADS  Google Scholar 

  74. Von Helmholtz, H. Handbuch der Physiologischen Optik Vol. 9 (Voss, Leipzig, 1867).

  75. Rayleigh, L. On the law of reciprocity in diffuse reflexion. The London, Edinburgh, Dublin Philos. Mag. J. Sci. 49, 324–325 (1900).

    Article  MATH  Google Scholar 

  76. Takeda, M. & Mutoh, K. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt. 22, 3977–3982 (1983).

    Article  ADS  Google Scholar 

  77. Woodham, R. J. Photometric method for determining surface orientation from multiple images. Opt. Eng. 19, 191139 (1980).

    Article  Google Scholar 

  78. Zhang, Y. et al. A fast 3D reconstruction system with a low-cost camera accessory. Sci. Rep. 5, 10909 (2015).

    Article  ADS  Google Scholar 

  79. Sun, B. et al. Differential computational ghost imaging. In Imaging and Applied Optics CTu1C.4 (OSA, 2013).

  80. Shrekenhamer, D., Watts, C. M. & Padilla, W. J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. Opt. Express 21, 12507–12518 (2013).

    Article  ADS  Google Scholar 

  81. Rout, S. & Sonkusale, S. R. A low-voltage high-speed terahertz spatial light modulator using active metamaterial. APL Photon. 1, 086102 (2016).

    Article  ADS  Google Scholar 

  82. Hunt, J. et al. Metamaterial apertures for computational imaging. Science 339, 310–313 (2013).

    Article  ADS  Google Scholar 

  83. Kane, T. J., Byvik, C. E., Kozlovsky, W. J. & Byer, R. L. Coherent laser radar at 1.06 μm using Nd:YAG lasers. Opt. Lett. 12, 239–241 (1987).

    Article  ADS  Google Scholar 

  84. Le Gall, D. MPEG: a video compression standard for multimedia applications. Commun. ACM 34, 46–58 (1991).

    Article  Google Scholar 

  85. Gibson, G. et al. Imaging of methane gas using a scanning, open-path laser system. New J. Phys. 8, 26 (2006).

    Article  ADS  Google Scholar 

  86. Stothard, D., Dunn, M. & Rae, C. Hyperspectral imaging of gases with a continuous-wave pump-enhanced optical parametric oscillator. Opt. Express 12, 947–955 (2004).

    Article  ADS  Google Scholar 

  87. Takhar, D. et al. A new compressive imaging camera architecture using optical-domain compression. In Computational Imaging IV Vol. 6065 Proc. SPIE-IS&T Electronic Imaging (eds Bouman, C. A. et al.) 606509 (SPIE, 2006).

Download references

Acknowledgements

The authors acknowledge support from EPSRC QuantIC (EP/M01326X/1) and ERC TWISTS (grant no. 192382).

Author information

Authors and Affiliations

Authors

Contributions

M.P.E. conducted the experiments and processed the data presented in Figs. 2 and 5. G.M.G. conducted the experiment and processed the data presented in Fig. 4. M.P.E., M.J.P. and G.M.G. all contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to Miles J. Padgett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edgar, M.P., Gibson, G.M. & Padgett, M.J. Principles and prospects for single-pixel imaging. Nature Photon 13, 13–20 (2019). https://doi.org/10.1038/s41566-018-0300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0300-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing