Abstract
Modern digital cameras employ silicon focal plane array (FPA) image sensors featuring millions of pixels. However, it is possible to make a camera that only needs one pixel. In these cameras a spatial light modulator, placed before or after the object to be imaged, applies a time-varying pattern and synchronized intensity measurements are made with a single-pixel detector. The principle of compressed sensing then allows an image to be generated. As the approach suits a wide a variety of detector technologies, images can be collected at wavelengths outside the reach of FPA technology or at high frame rates or in three dimensions. Promising applications include the visualization of hazardous gas leaks and 3D situation awareness for autonomous vehicles.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
£14.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Baird, J. L. Apparatus for transmitting views or images to a distance. US patent 1,699,270 (1929).
Goldberg, E. Nipkow disk for television. US patent 1,973,203 (1934).
Sen, P. et al. Dual photography. ACM Trans. Graph. 24, 745–755 (2005).
Duarte, M. F. et al. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25, 83–91 (2008).
Welsh, S. S. et al. Fast full-color computational imaging with single-pixel detectors. Opt. Express 21, 23068–23074 (2013).
Bian, L. et al. Multispectral imaging using a single bucket detector. Sci. Rep. 6, 24752 (2016).
Rousset, F. et al. Time-resolved multispectral imaging based on an adaptive single-pixel camera. Opt. Express 26, 10550–10558 (2018).
Zhang, Z. et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements. Optica 5, 315–319 (2018).
Studer, V. et al. Compressive fluorescence microscopy for biological and hyperspectral imaging. Proc. Natl Acad. Sci. USA 109, E1679–E1687 (2012).
Hahn, J., Debes, C., Leigsnering, M. & Zoubir, A. M. Compressive sensing and adaptive direct sampling in hyperspectral imaging. Digit. Signal Process. 26, 113–126 (2014).
Edgar, M. P. et al. Simultaneous real-time visible and infrared video with single-pixel detectors. Sci. Rep. 5, 10669 (2015).
Chan, W. L. et al. A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett. 93, 121105 (2008).
Watts, C. M. et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photon. 8, 605–609 (2014).
Stantchev, R. I. et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci. Adv. 2, e1600190 (2016).
Gibson, G. M. et al. Real-time imaging of methane gas leaks using a single-pixel camera. Opt. Express 25, 2998–3005 (2017).
Radwell, N. et al. Single-pixel infrared and visible microscope. Optica 1, 285–289 (2014).
Zhang, Y. et al. 3D single-pixel video. J. Opt. 18, 035203 (2016).
Goldstein, T., Xu, L., Kelly, K. F. & Baraniuk, R. The STOne transform: multi-resolution image enhancement and compressive video. IEEE Trans. Image Process. 24, 5581–5593 (2015).
Zhang, Z., Wang, X., Zheng, G. & Zhong, J. Fast Fourier single-pixel imaging via binary illumination. Sci. Rep. 7, 12029 (2017).
Higham, C. F., Murray-Smith, R., Padgett, M. J. & Edgar, M. P. Deep learning for real-time single-pixel video. Sci. Rep. 8, 2369 (2018).
Zheng, J. & Jacobs, E. L. Video compressive sensing using spatial domain sparsity. Opt. Eng. 48, 087006 (2009).
Sankaranarayanan, A. C., Studer, C. & Baraniuk, R. G. CS-MUVI: video compressive sensing for spatial-multiplexing cameras. In Computational Photography 1–10 (IEEE, 2012).
Xu, L. et al. Multi-scale compressive video acquisition. In Imaging and Applied Optics CW2C.4 (OSA, 2013).
Wu, Y., Ye, P., Mirza, I. O., Arce, G. R. & Prather, D. W. Experimental demonstration of an optical-sectioning compressive sensing microscope (CSM). Opt. Express 18, 24565–24578 (2010).
Sun, B. et al. 3D computational imaging with single-pixel detectors. Science 340, 844–847 (2013).
Howland, G. A., Dixon, P. B. & Howell, J. C. Photon-counting compressive sensing laser radar for 3D imaging. Appl. Opt. 50, 5917–5920 (2011).
Howland, G. A., Lum, D. J., Ware, M. R. & Howell, J. C. Photon counting compressive depth mapping. Opt. Express 21, 23822–23837 (2013).
Sun, M.-J., Edgar, M. P., Phillips, D. B., Gibson, G. M. & Padgett, M. J. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning. Opt. Express 24, 10476–10485 (2016).
Edgar, M. P. et al. Real-time 3D video utilizing a compressed sensing time-of-flight single-pixel camera. In Optical Trapping and Optical Micromanipulation XIII Vol. 9922, 99221B (SPIE, 2016).
Zhang, Z. & Zhong, J. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels. Opt. Lett. 41, 2497–2500 (2016).
Durán, V., Clemente, P., Fernández-Alonso, M., Tajahuerce, E. & Lancis, J. Single-pixel polarimetric imaging. Opt. Lett. 37, 824–826 (2012).
Soldevila, F. et al. Single-pixel polarimetric imaging spectrometer by compressive sensing. Appl. Phys. B 113, 551–558 (2013).
Welsh, S. S., Edgar, M. P., Bowman, R., Sun, B. & Padgett, M. J. Near video-rate linear Stokes imaging with single-pixel detectors. J. Opt. 17, 025705 (2015).
Tajahuerce, E. et al. Image transmission through dynamic scattering media by single-pixel photodetection. Opt. Express 22, 16945–16955 (2014).
Durán, V. et al. Compressive imaging in scattering media. Opt. Express 23, 14424–14433 (2015).
Greenberg, J., Krishnamurthy, K. & Brady, D. Compressive single-pixel snapshot x-ray diffraction imaging. Opt. Lett. 39, 111–114 (2014).
Huynh, N. et al. Single-pixel optical camera for video rate ultrasonic imaging. Optica 3, 26–29 (2016).
Yang, J. et al. Motionless volumetric photoacoustic microscopy with spatially invariant resolution. Nat. Commun. 8, 780 (2017).
Clemente, P. et al. Compressive holography with a single-pixel detector. Opt. Lett. 38, 2524–2527 (2013).
Soldevila, F., Durán, V., Clemente, P., Lancis, J. & Tajahuerce, E. Phase imaging by spatial wavefront sampling. Optica 5, 164–174 (2018).
Haldar, J. P., Hernando, D. & Liang, Z.-P. Compressed-sensing MRI with random encoding. IEEE Trans. Med. Imaging 30, 893–903 (2011).
Lochocki, B. et al. Single pixel camera ophthalmoscope. Optica 3, 1056–1059 (2016).
Ota, S. et al. Ghost cytometry. Science 360, 1246–1251 (2018).
Guo, Q. et al. Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition. Opt. Express 23, 29639–29646 (2015).
Xu, Z.-H., Chen, W., Penuelas, J., Padgett, M. & Sun, M.-J. 1000 fps computational ghost imaging using LED-based structured illumination. Opt. Express 26, 2427–2434 (2018).
Yu, W.-K. et al. Complementary compressive imaging for the telescopic system. Sci. Rep. 4, 5834 (2014).
Gong, W. et al. Three-dimensional ghost imaging lidar via sparsity constraint. Sci. Rep. 6, 26133 (2016).
Sampsell, J. B. Digital micromirror device and its application to projection displays. J. Vac. Sci. Technol. B 12, 3242–3246 (1994).
Sun, M.-J. et al. Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun. 7, 12010 (2016).
Phillips, D. B. et al. Adaptive foveated single-pixel imaging with dynamic super-sampling. Sci. Adv. 3, e1601782 (2017).
Shapiro, J. H. Computational ghost imaging. Phys. Rev. A 78, 061802 (2008).
Jiang, H., Huang, G. & Wilford, P. Multi-view in lensless compressive imaging. In 2013 Picture Coding Symposium 41–44 (IEEE, 2013).
Herman, M. A., Tidman, J., Hewitt, D., Weston, T. & McMackin, L. A higher-speed compressive sensing camera through multi-diode design. In Compressive Sensing II Vol. 8717, 871706 (International Society for Optics and Photonics, 2013).
Mackenzie, D. What’s Happening in the Mathematical Sciences Vol. 7 (American Mathematical Society, 2009).
Aravind, R., Cash, G. L. & Worth, J. P. On implementing the JPEG still-picture compression algorithm. In Visual Communications and Image Processing IV Vol. 1199, 799–808 (SPIE, 1989).
Shannon, C. Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949).
Candes, E. J. & Tao, T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
Sen, P. et al. Dual photography. In ACM SIGGRAPH 2005 Papers SIGGRAPH ’05 745–755 (ACM, New York, 2005).
Candès, E. & Romberg, J. Sparsity and incoherence in compressive sampling. Inverse Problems 23, 969 (2007).
Donoho, D. L. & Stark, P. B. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49, 906–931 (1989).
Donoho, D. L. & Logan, B. F. Signal recovery and the large sieve. SIAM J. Appl. Math. 52, 577–591 (1992).
Rudin, L. I., Osher, S. & Fatemi, E. Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992).
Goldluecke, B. & Cremers, D. Introducing total curvature for image processing. In 2011 IEEE Int. Conf. Computer Vision (ICCV) 1267–1274 (IEEE, 2011).
Pratt, W. K., Kane, J. & Andrews, H. C. Hadamard transform image coding. Proc. IEEE 57, 58–68 (1969).
Sloane, N. J. A. & Harwit, M. Masks for Hadamard transform optics, and weighing designs. Appl. Opt. 15, 107–114 (1976).
Zhang, Z., Ma, X. & Zhong, J. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun. 6, 6225 (2015).
Aβmann, M. & Bayer, M. Compressive adaptive computational ghost imaging. Sci. Rep. 3, 1545 (2013).
Soldevila, F., Salvador-Balaguer, E., Clemente, P., Tajahuerce, E. & Lancis, J. High-resolution adaptive imaging with a single photodiode. Sci. Rep. 5, 14300 (2015).
Rousset, F. et al. Adaptive basis scan by wavelet prediction for single-pixel imaging. IEEE Trans. Comput. Imaging 3, 36–46 (2017).
Czajkowski, K. M., Pastuszczak, A. & Kotyński, R. Real-time single-pixel video imaging with Fourier domain regularization. Opt. Express 26, 20009–20022 (2018).
Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007).
Noor, I. & Jacobs, E. L. Adaptive compressive sensing algorithm for video acquisition using a single-pixel camera. J. Electron. Imaging 22, 021013 (2013).
Howland, G. A., Lum, D. J. & Howell, J. C. Compressive wavefront sensing with weak values. Opt. Express 22, 18870–18880 (2014).
Von Helmholtz, H. Handbuch der Physiologischen Optik Vol. 9 (Voss, Leipzig, 1867).
Rayleigh, L. On the law of reciprocity in diffuse reflexion. The London, Edinburgh, Dublin Philos. Mag. J. Sci. 49, 324–325 (1900).
Takeda, M. & Mutoh, K. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt. 22, 3977–3982 (1983).
Woodham, R. J. Photometric method for determining surface orientation from multiple images. Opt. Eng. 19, 191139 (1980).
Zhang, Y. et al. A fast 3D reconstruction system with a low-cost camera accessory. Sci. Rep. 5, 10909 (2015).
Sun, B. et al. Differential computational ghost imaging. In Imaging and Applied Optics CTu1C.4 (OSA, 2013).
Shrekenhamer, D., Watts, C. M. & Padilla, W. J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. Opt. Express 21, 12507–12518 (2013).
Rout, S. & Sonkusale, S. R. A low-voltage high-speed terahertz spatial light modulator using active metamaterial. APL Photon. 1, 086102 (2016).
Hunt, J. et al. Metamaterial apertures for computational imaging. Science 339, 310–313 (2013).
Kane, T. J., Byvik, C. E., Kozlovsky, W. J. & Byer, R. L. Coherent laser radar at 1.06 μm using Nd:YAG lasers. Opt. Lett. 12, 239–241 (1987).
Le Gall, D. MPEG: a video compression standard for multimedia applications. Commun. ACM 34, 46–58 (1991).
Gibson, G. et al. Imaging of methane gas using a scanning, open-path laser system. New J. Phys. 8, 26 (2006).
Stothard, D., Dunn, M. & Rae, C. Hyperspectral imaging of gases with a continuous-wave pump-enhanced optical parametric oscillator. Opt. Express 12, 947–955 (2004).
Takhar, D. et al. A new compressive imaging camera architecture using optical-domain compression. In Computational Imaging IV Vol. 6065 Proc. SPIE-IS&T Electronic Imaging (eds Bouman, C. A. et al.) 606509 (SPIE, 2006).
Acknowledgements
The authors acknowledge support from EPSRC QuantIC (EP/M01326X/1) and ERC TWISTS (grant no. 192382).
Author information
Authors and Affiliations
Contributions
M.P.E. conducted the experiments and processed the data presented in Figs. 2 and 5. G.M.G. conducted the experiment and processed the data presented in Fig. 4. M.P.E., M.J.P. and G.M.G. all contributed to the writing and editing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Edgar, M.P., Gibson, G.M. & Padgett, M.J. Principles and prospects for single-pixel imaging. Nature Photon 13, 13–20 (2019). https://doi.org/10.1038/s41566-018-0300-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-018-0300-7