Photoacoustic Imaging with Capacitive Micromachined Ultrasound Transducers: Principles and Developments
<p>(<b>a</b>) Diagram of the working principle of Fabry–Perot interferometers (FPI). An incoming ultrasound wave causes a variation in thickness which in turn results in a phase modulation (Reproduced from [<a href="#B88-sensors-19-03617" class="html-bibr">88</a>], with the permission of AIP Publishing.); (<b>b</b>) schematic diagram of an micro ring resonators (MRR); (<b>c</b>) schematic diagram of a forward-viewing photoacoustic probe for endoscopy imaging used in [<a href="#B69-sensors-19-03617" class="html-bibr">69</a>]; (<b>d</b>) photoacoustic endoscopy with a MRR detector used in (Adapted with permission from ref [<a href="#B82-sensors-19-03617" class="html-bibr">82</a>], [The Optical Society]).</p> "> Figure 2
<p>(<b>a</b>) Capacitive micromachined ultrasound transducers (CMUT) transmission mode; (<b>b</b>) CMUT receiving mode.</p> "> Figure 3
<p>(<b>a</b>) Model of the chicken breast phantom, (<b>b</b>) ultrasonic imaging, (<b>c</b>) PAI, and (<b>d</b>) a combination of photoacoustic and ultrasonic imaging (© [2009] IEEE. Reprinted, with permission, from [<a href="#B117-sensors-19-03617" class="html-bibr">117</a>]); (<b>e</b>) working principle of top orthogonal to bottom electrode (TOBE) (© [2014] IEEE. Reprinted, with permission, from [<a href="#B124-sensors-19-03617" class="html-bibr">124</a>]).</p> "> Figure 4
<p>(<b>a</b>) Optical absorption of silicon under different wavelength (© [2010] IEEE. Reprinted, with permission, from [<a href="#B118-sensors-19-03617" class="html-bibr">118</a>]) and (<b>b</b>) structure of optically transparent CMUT (© [2018] IEEE. Reprinted, with permission, from [<a href="#B126-sensors-19-03617" class="html-bibr">126</a>]), (<b>c</b>) imaging of mouse brain using the different frequencies of the CMUT (© [2018] IEEE. Reprinted, with permission, from [<a href="#B130-sensors-19-03617" class="html-bibr">130</a>]), (<b>d</b>) interlaced CMUT (© [2017] IEEE. Reprinted, with permission, from [<a href="#B128-sensors-19-03617" class="html-bibr">128</a>]), (<b>e</b>) multi-band CMUT (Adapted with permission from ref [<a href="#B129-sensors-19-03617" class="html-bibr">129</a>], [The Optical Society]), (<b>f</b>) monolithic multiband CMUT with five frequencies (© [2018] IEEE. Reprinted, with permission, from [<a href="#B130-sensors-19-03617" class="html-bibr">130</a>]).</p> "> Figure 5
<p>Timeline of CMUT designs for PAI endoscopes [<a href="#B118-sensors-19-03617" class="html-bibr">118</a>,<a href="#B119-sensors-19-03617" class="html-bibr">119</a>,<a href="#B120-sensors-19-03617" class="html-bibr">120</a>,<a href="#B121-sensors-19-03617" class="html-bibr">121</a>]; (<b>a</b>) inward-looking cylindrical transducer (© [2006] IEEE. Reprinted, with permission, from [<a href="#B120-sensors-19-03617" class="html-bibr">120</a>]); (<b>b</b>) 9F MicroLinear CMUT ICE catheter (© [2012] IEEE. Reprinted, with permission, from [<a href="#B119-sensors-19-03617" class="html-bibr">119</a>]); (<b>c</b>) miniature needle-shaped CMUT (© [2010] IEEE. Reprinted, with permission, from [<a href="#B118-sensors-19-03617" class="html-bibr">118</a>]); (<b>d</b>) integrated ring CMUT array (© [2013] IEEE. Reprinted, with permission, from [<a href="#B121-sensors-19-03617" class="html-bibr">121</a>]).</p> ">
Abstract
:1. Introduction
2. Photoacoustic Modalities
2.1. Photoacoustic Computed Tomography
2.2. Photoacoustic Microscopy
2.2.1. Acoustic Resolution Photoacoustic Microscopy
2.2.2. Optical Resolution Photoacoustic Microscopy
2.3. Detectors Used in the Different PAI Modalities
3. Detectors
3.1. Fabry-Perot Interferometer
3.2. Micro Ring Resonator
3.3. Piezoelectric Transducer
3.4. Capacitive Micromachined Ultrasound Transducer
3.5. Discussion of the Acoustic Sensors
4. Development of Capacitive Micromachined Ultrasound Transducer for Photoacoustic Imaging
4.1. Photoacoustic Computed Tomography with Capacitive Micromachined Ultrasound Transducer
4.1.1. Two-dimensional Capacitive Micromachined Ultrasound Transducer
4.1.2. Transparent Capacitive Micromachined Ultrasound Transducer
4.1.3. Multi-Frequency Capacitive Micromachined Ultrasound Transducer
4.2. Photoacoustic Endoscopy with Capacitive Micromachined Ultrasound Transducer
4.2.1. Phased Array Capacitive Micromachined Ultrasound Transducer
4.2.2. Ring Array Capacitive Micromachined Ultrasound Transducer
4.3. Industrialization of Capacitive Micromachined Ultrasound Transducer for Photoacoustic Imaging
4.4. Challenges and Prospects of Using Capacitive Micromachined Ultrasound Transducer for Photoacoustic Imaging
5. Conclusions
Funding
Conflicts of Interest
References
- Wang, X.; Roberts, W.W.; Carson, P.L.; Wood, D.P.; Fowlkes, J.B. Photoacoustic tomography: A potential new tool for prostate cancer. Biomed. Opt. Express 2010, 1, 770–775. [Google Scholar] [CrossRef]
- Zhang, P.; Li, L.; Lin, L.; Hu, P.; Shi, J.; He, Y.; Zhu, L. High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo. J. Biophotonics 2018, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Petrova, I.Y.; Petrov, Y.Y.; Esenaliev, R.O.; Deyo, D.J.; Cicenaite, I.; Prough, D.S. Noninvasive monitoring of cerebral blood oxygenation in ovine superior sagittal sinus with novel multi-wavelength optoacoustic system. Opt. Express 2009, 17, 221–229. [Google Scholar] [CrossRef]
- Nie, L.; Guo, Z.; Wang, L.V. Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers. J. Biomed. Opt. 2011, 16, 076005. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Rank, E.; Meiburger, K.M.; Sinz, C.; Hodul, A.; Hoover, E.; Minneman, M.; Ensher, J.; Beard, P.C.; Kittler, H.; et al. Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.T.; Li, M.L.; Zhang, H.F.; Maslov, K.; Stoica, G.; Wang, L.V. Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. J. Biomed. Opt. 2006, 11, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Jiang, M.; Hu, J.; Fawzi, A.; Zhou, Q.; Kirk, K.; Puliafito, C.A.; Zhang, H.F. Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt. Express 2010, 18, 3967–3972. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.V. Prospects of photoacoustic tomography. Med. Phys. 2008, 35, 5758–5767. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, L.V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101. [Google Scholar] [CrossRef] [Green Version]
- Beard, P. Biomedical Photoacoustic Imaging: A review. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef]
- Emelianov, S.Y.; Li, P.C.; O’Donnell, M. Photoacoustics for molecular imaging and therapy. Phys. Today 2009, 62, 34–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lihong, V.W.; Liang, G. Photoacoustic microscopy and computed tomography: From bench to bedside. Annu. Rev. Biomed. Eng. 2014, 16, 155–185. [Google Scholar]
- Zhou, Y.; Yao, J.; Wang, L.V. Tutorial on photoacoustic tomography. J. Biomed. Opt. 2016, 21, 061007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, J.; Yao, J.; Wang, L. Photoacoustic tomography: Principles and advances. Electromagn. Waves (Cambridge Mass.) 2014, 147, 1–22. [Google Scholar] [CrossRef]
- Wang, L.V.; Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 2016, 13, 267. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tang, Y.; Yao, J. Photoacoustic tomography of blood oxygenation: A mini review. Photoacoustics 2018, 10, 65–73. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.V. Sensitivity of photoacoustic microscopy. Photoacoustics 2014, 2, 87–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, K.; Muller, N.; Liu, Z.; Pfeifer, T. Temporal resolution beyond the average pulse duration in shaped noisy-pulse transient absorption spectroscopy. Appl. Opt. 2016, 55, 10318–10322. [Google Scholar] [CrossRef]
- Irisawa, K.; Hirasawa, T.; Hirota, K.; Tsujita, K.; Ishihara, M. Influence of laser pulse width to the photoacoustic temporal waveform and the image resolution with a solid- state excitation laser. In Photons Plus Ultrasound: Imaging and Sensing 2012; SPIE Press: San Francisco, CA, USA, 2012. [Google Scholar]
- Wissmeyer, G.; Pleitez, M.A.; Rosenthal, A.; Ntziachristos, V. Looking at sound: Optoacoustics with all-optical ultrasound detection. Light Sci. Appl. 2018, 7. [Google Scholar] [CrossRef]
- Chen, J. Capacitive micromachined ultrasonic transducer arrays for minimally invasive medical ultrasound. J. Micromech. Microeng. 2010, 20, 023001. [Google Scholar] [CrossRef]
- Yin, B.; Xing, D.; Wang, Y.; Zeng, Y.; Tan, Y.; Chen, Q. Fast photoacoustic imaging system based on 320-element linear transducer array. Phys. Med. Biol. 2004, 49, 1339–1346. [Google Scholar] [CrossRef] [PubMed]
- Oralkan, O.; Ergun, A.S.; Johnson, J.A.; Karaman, M.; Demirci, U.; Kaviani, K.; Lee, T.H.; Khuri-Yakub, B.T. Capacitive Micromachined Ultrasonic Transducers: Next-Generation Arrays for Acoustic Imaging? IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 1596–1610. [Google Scholar] [CrossRef] [PubMed]
- Haller, M.I.; Khuri-Yakub, B.T. A Surface Micromachined Electrostatic Ultrasonic Air Transducer. In Proceedings of the 1994 IEEE Ultrasonics Symposium, Cannes, France, 31 October–3 November 1994; pp. 1241–1244. [Google Scholar]
- Brenner, K.; Ergun, A.S.; Firouzi, K.; Rasmussen, M.F. Advances in Capacitive Micromachined Ultrasonic Transducers. Micromachines 2019, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.S.; Vaithilingam, S.; Park, K.K.; Nikoozadeh, A.; Firouzi, K.; Choe, J.W.; Watkins, R.D.; Oguz, H.K.; Kupnik, M.; Pauly, K.B.; et al. A 1-MHz 2-D CMUT array for HIFU thermal ablation. In AIP Conference Proceedings; AIP Publishing: Las Vegas, NV, USA, 2017; Volume 1821. [Google Scholar]
- Wong, S.H.; Kupnik, M.; Butts-Pauly, K.; Khuri-Yakub, B.T. Advantages of Capacitive Micromachined Ultrasonics Transducers (CMUTs) for High Intensity Focused Ultrasound (HIFU). In Proceedings of the 2007 IEEE Ultrasonics Symposium, New York, NY, USA, 28–31 October 2007; pp. 1313–1316. [Google Scholar]
- Chen, A.I.H.; Wong, L.L.; Logan, A.S.; Yeow, J.T.W. A CMUT-based real-time volumetric ultrasound imaging system with row-column addressing. In Proceedings of the 2011 IEEE International Ultrasonics Symposium (IUS), Orlando, FL, USA, 18–21 October 2011; pp. 1755–1758. [Google Scholar]
- Lim, J.; Tekes, C.; Degertekin, F.L.; Ghovanloo, M. Towards a Reduced-Wire Interface for CMUT-Based Intravascular Ultrasound Imaging Systems. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Yeh, D.T.; Oralkan, O.; Ergun, A.S.; Zhuang, X.; Wygant, I.O.; Khuri-Yakub, B.T. High-frequency CMUT arrays for high-resolution medical imaging. In Proceedings of the 2004 IEEE Ultrasonics Symposium, Montreal, QC, Canada, 23–27 August 2004; pp. 339–402. [Google Scholar]
- Chen, A.I.; Wong, L.L.P.; Na, S.; Li, Z.; Macecek, M.; Yeow, J.T.W. Fabrication of a Curved Row–Column Addressed Capacitive Micromachined Ultrasonic Transducer Array. J. Microelectromech. Syst. 2016, 25, 675–682. [Google Scholar] [CrossRef]
- Wong, L.L.P.; Chen, A.I.; Logan, A.S.; Yeow, J.T.W. An FPGA-based ultrasound imaging system using capacitive micromachined ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 1513–1520. [Google Scholar] [CrossRef]
- Logan, A.S.; Wong, L.L.P.; Yeow, J.T.W. A 1-D Capacitive Micromachined Ultrasonic Transducer Imaging Array Fabricated with a Silicon-Nitride-Based Fusion Process. IEEE/ASME Trans. Mechatron. 2011, 16, 861–865. [Google Scholar] [CrossRef]
- Zheng, Z.; Yao, Y.; Sun, Y.; Yeow, J.T.W. Development of a highly sensitive humidity sensor based on the capacitive micromachined ultrasonic transducer. Sens. Actuators B. Chem. 2019, 286, 39–45. [Google Scholar] [CrossRef]
- Zheng, Z.; Yao, Y.; Liu, J.A.; Sun, Y.; Yeow, J.T.W. Highly sensitive CMUT-based humidity sensors built with nitride-to-oxide wafer bonding technology. Sens. Actuators B. Chem. 2019, 294, 123–131. [Google Scholar] [CrossRef]
- Takezaki, T.; Kawano, M.; Machida, S.; Ryuzaki, D. Improvement in lateral resolution of through-transmission scanning acoustic tomography using capacitive micromachined ultrasound transducer. Microelectron. Reliab. 2019, 93, 22–28. [Google Scholar] [CrossRef]
- Wang, L.V.; Hu, S. Photoacoustic Tomography: In Vivo Imaging, from Organelles to Organs. Science 2012, 335, 1458–1462. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Chatni, M.R.; Maslov, K.; Guo, Z.; Wang, K.; Anastasio, M.; Wang, L.V. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J. Biomed. Opt. 2012, 17, 050506. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, L.V. Time Reversal and Its Application to Tomography with Diffracting Sources. Phys. Rev. Lett. 2004, 92, 033902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treeby, B.E.; Zhang, E.Z.; Cox, B.T. Photoacoustic tomography in absorbing acoustic media using time reversal. Inverse Probl. 2010, 26, 115003. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, G.; Yu, Y.; Zhou, Y.; Carson, P.L.; Wang, X.; Liu, X. Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization. J. Biomed. Opt. 2013, 18, 86001. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Xia, J.; Maslov, K.I.; Nasiriavanaki, M.; Tsytsarev, V.; Demchenko, A.V.; Wang, L.V. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. Neuroimage 2013, 64, 257–266. [Google Scholar] [CrossRef]
- Li, W.; Chen, R.; Lv, J.; Wang, H.; Liu, Y.; Peng, Y.; Qian, Z.; Fu, G.; Nie, L. In Vivo Photoacoustic Imaging of Brain Injury and Rehabilitation by High-Efficient Near-Infrared Dye Labeled Mesenchymal Stem Cells with Enhanced Brain Barrier Permeability. Adv. Sci. 2018, 5, 1700277. [Google Scholar] [CrossRef]
- Lv, J.; Peng, Y.; Li, S.; Guo, Z.; Zhao, Q.; Zhang, X.; Nie, L. Hemispherical photoacoustic imaging of myocardial infarction: In vivo detection and monitoring. Eur. Radiol. 2018, 28, 2176–2183. [Google Scholar] [CrossRef]
- Lin, L.; Hu, P.; Shi, J.; Appleton, C.M.; Maslov, K.; Li, L.; Zhang, R.; Wang, L.V. Single-breath-hold photoacoustic computed tomography of the breast. Nat. Commun. 2018, 9, 2352. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.V. Photoacoustic microscopy. Laser Photonics 2013, 7, 758–778. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, L.; Xu, M.; Zheng, J.; Yuan, Z. Dual-Modal In Vivo Fluorescence/Photoacoustic Microscopy Imaging of Inflammation Induced by GFP-Expressing Bacteria. Sensors (Switzerland) 2019, 19, 238. [Google Scholar] [CrossRef]
- Hu, S.; Wang, L.V. Photoacoustic imaging and characterization of the microvasculature. J. Biomed. Opt. 2010, 15, 1–15. [Google Scholar] [CrossRef]
- Periyasamy, V.; Das, N.; Sharma, A.; Pramanik, M. 1064 nm acoustic resolution photoacoustic microscopy. J. Biophotonics 2018, 1–9. [Google Scholar] [CrossRef]
- Mallidi, S.; Luke, G.P.; Emelianov, S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 2011, 29, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Lee, C.; Kim, J.; Kim, C. Acoustic Resolution Photoacoustic Microscopy. Biomed. Eng. Lett. 2014, 4, 213–222. [Google Scholar] [CrossRef]
- Koo, J.; Jeon, M.; Oh, Y.; Kang, H.W.; Kim, J.; Kim, C.; Oh, J. In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG- enhanced carbon nanotubes. Phys. Med. Biol. 2012, 57, 7853–7862. [Google Scholar] [CrossRef]
- Kim, C.; Jeon, M.; Wang, L.V. Nonionizing photoacoustic cystography in vivo. Opt. Lett. 2011, 36, 3599–3601. [Google Scholar] [CrossRef]
- Zhang, Y.; Jeon, M.; Rich, L.J.; Hong, H.; Geng, J.; Zhang, Y.; Shi, S.; Barnhart, T.E.; Alexandridis, P.; Huizinga, J.D.; et al. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanine. Nat. Nanotechnol. 2014, 9, 631–638. [Google Scholar] [CrossRef]
- Chen, S.L.; Guo, L.J.; Wang, X. All-optical photoacoustic microscopy. Photoacoustics 2015, 3, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Wang, L.V. Optical-Resolution Photoacoustic Microscopy: Auscultation of Biological Systems at the Cellular Level. Biophys. J. 2013, 105, 841–847. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Wei, Q.; Song, W.; Burke, J.M.; Jiao, S. Near-infrared light photoacoustic ophthalmoscopy. Biomed. Opt. Express 2012, 3, 1169–1176. [Google Scholar] [CrossRef]
- Hu, S.; Rao, B.; Maslov, K.; Wang, L.V. Label-free Photoacoustic Ophthalmic Angiography. Opt. Lett. 2010, 35, 1–3. [Google Scholar] [CrossRef]
- Zhou, Y.; Xing, W.; Maslov, K.I.; Cornelius, L.A.; Wang, L.V. Handheld photoacoustic microscopy to detect melanoma depth in vivo. Opt. Lett. 2014, 39, 4731–4734. [Google Scholar] [CrossRef]
- Hu, S.; Maslov, K.; Tsytsarev, V.; Wang, L.V. Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J. Biomed. Opt. 2009, 14, 1–9. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, L.; Chen, X. Photoacoustic Molecular Imaging: From Multiscale Biomedical Applications Towards Early-Stage Theranostics. Trends Biotechnol. 2016, 34, 420. [Google Scholar] [CrossRef]
- Brecht, H.; Su, R.; Fronheiser, M.; Ermilov, S.A.; Conjusteau, A.; Oraevsky, A.A. Whole-body three-dimensional optoacoustic tomography system for small animals. J. Biomed. Opt. 2009, 14, 1–8. [Google Scholar] [CrossRef]
- Erfanzadeh, M.; Zhu, Q. Photoacoustics Photoacoustic imaging with low-cost sources; A review. Photoacoustics 2019, 14, 1–11. [Google Scholar] [CrossRef]
- Zhang, H.F.; Maslov, K.; Stoica, G.; Wang, L.V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 2006, 24, 848–851. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, Y.H.; Park, K.S.; Eom, J.B.; Kim, M.J.; Rho, B.S.; Choi, H.Y. Interferometric Fiber Optic Sensors. Sensors (Switzerland) 2012, 12, 2467–2486. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Sun, C.; Zhang, H.F. Optical Detection of Ultrasound in Photoacoustic Imaging. IEEE Trans. Biomed. Eng. 2017, 64, 4–15. [Google Scholar] [CrossRef]
- Hajireza, P.; Krause, K.; Brett, M.; Zemp, R. Glancing angle deposited nanostructured film Fabry-Perot etalons for optical detection of ultrasound. Opt. Express 2013, 21, 6391–6400. [Google Scholar] [CrossRef]
- Hajireza, P.; Sorge, J.; Brett, M.; Zemp, R.J. In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry–Perot etalons. Opt. Lett. 2015, 40, 1350–1353. [Google Scholar] [CrossRef]
- Ansari, R.; Zhang, E.Z.; Desjardins, A.E. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy. Light Sci. Appl. 2018, 7. [Google Scholar] [CrossRef]
- Plumb, A.A.; Huynh, N.T.; Guggenheim, J.; Zhang, E.; Beard, P. Rapid volumetric photoacoustic tomographic imaging with a Fabry-Perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli. Eur. Radiol. 2018, 28, 1037–1045. [Google Scholar] [CrossRef]
- Schellenberg, M.W.; Hunt, H.K. Hand-held optoacoustic imaging: A review. Photoacoustics 2018, 11, 14–27. [Google Scholar] [CrossRef]
- Buchmann, J.; Guggenheim, J.; Zhang, E.; Scharfenorth, C.; Spannekrebs, B.; Villringer, C.; Laufer, J. Characterization and modeling of Fabry–Perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging. Appl. Opt. 2017, 56, 5039. [Google Scholar] [CrossRef]
- Islam, M.R.; Ali, M.M.; Lai, M.; Lim, K.; Ahmad, H. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review. Sensors (Switzerland) 2014, 14, 7451–7488. [Google Scholar] [CrossRef] [Green Version]
- Tseng, S.; Chen, C. Optical fiber Fabry-Perot sensors. Appl. Opt. 1988, 27, 547–551. [Google Scholar] [CrossRef]
- Ding, W.; Jiang, Y.; Gao, R.; Liu, Y. High-temperature fiber-optic Fabry-Perot interferometric sensors. Rev. Sci. Instrum. 2015, 86, 055001. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xiao, H. Simultaneous measurement of temperature and pressure with cascaded extrinsic Fabry–Perot interferometer and intrinsic Fabry–Perot interferometer sensors. Opt. Eng. 2014, 53, 67101. [Google Scholar] [CrossRef]
- Liang, H.; Jia, P.; Liu, J.; Fang, G.; Li, Z.; Hong, Y.; Liang, T.; Xiong, J. Diaphragm-Free Fiber-Optic Fabry-Perot Interferometric Gas Pressure Sensor for High Temperature Application. Sensors (Switzerland) 2018, 18, 1011. [Google Scholar] [CrossRef]
- Eun, K.; Uddin, N.; Hyun, T.; Hua, Q.; Joong, H. Highly sensitive detection of biological substances using micro fluidic enhanced Fabry-Perot etalon-based optical biosensors. Sens. Actuators B. Chem. 2018, 277, 62–68. [Google Scholar]
- Zhang, E.Z.; Laufer, J.; Beard, P. Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system. In Photons Plus Ultrasound: Imaging and Sensing 2007: Proceedings of the Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics; SPIE: San Jose, CA, USA, 2007. [Google Scholar]
- Huang, S.; Chen, S.; Ling, T.; Maxswell, A. Optical Detection of High-Frequency Ultrasound Using Polymer Microring Resonators. In Proceedings of the 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications, Montreal, QC, Canada, 16–18 July 2008. [Google Scholar]
- Li, H.; Dong, B.; Zhang, Z.; Zhang, H.F.; Sun, C. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci. Rep. 2014, 4, 4496. [Google Scholar] [CrossRef]
- Dong, B.; Chen, S.; Zhang, Z.; Sun, C.; Zhang, H.F. Photoacoustic probe using a micro-ring resonator ultrasonic sensor for endoscopic applications. Opt. Lett. 2014, 39, 4372–4375. [Google Scholar] [CrossRef]
- Javanshir, S.; Pourziad, A.; Nikmehr, S. Optical temperature sensor with micro ring resonator and graphene to reach high sensitivity. Opt. Int. J. Light Electron. Opt. 2019, 180, 442–446. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, B.; Li, H.; Zhou, F.; Zhang, H.F.; Sun, C. Theoretical and experimental studies of distance dependent response of micro-ring resonator-based ultrasonic detectors for photoacoustic microscopy. J. Appl. Phys. 2014, 116, 144501. [Google Scholar] [CrossRef]
- Ashkenazi, S.; Chao, C.Y.; Guo, L.J.; O’Donnell, M. Ultrasound detection using polymer microring optical resonator. Appl. Phys. Lett. 2004, 85, 5418–5420. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.G.; Small, B.A.; Bergman, K.; Xu, Q.; Lipson, M. Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator. Opt. Lett. 2006, 31, 2701–2703. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.; Nath, J.; Chattopadhyay, T. Design of micro-ring resonator based all-optical parity generator and checker circuit. Opt. Commun. 2013, 303, 30–37. [Google Scholar]
- Ashkenazi, S.; Hou, Y.; Buma, T.; O’Donnell, M. Optoacoustic imaging using thin polymer etalon. Appl. Phys. Lett. 2005, 86, 134102. [Google Scholar] [CrossRef]
- Katzir, S. The Discovery of the Piezoelectric Effect. Arch. Hist. Exact Sci. 2003, 57, 61–91. [Google Scholar] [CrossRef]
- Wegener, M.; Oehler, H.; Lellinger, D.; Alig, I. Note: Piezoelectric polymers as transducers for the ultrasonic-reflection method and the application in mechanical property- screening of coatings. Rev. Sci. Instrum. 2012, 83, 016102. [Google Scholar] [CrossRef]
- Xin, Y.; Li, X.; Tian, H.; Guo, C.; Qian, C.; Wang, S. Shoes-equipped piezoelectric transducer for energy harvesting: A brief review. Ferroelectrics 2016, 493, 12–24. [Google Scholar] [CrossRef]
- Raihan, A.; Siddique, M.; Mahmud, S.; Heyst, B. Van A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energy Convers. Manag. 2015, 106, 728–747. [Google Scholar]
- Shung, K.K.; Cannata, J.M.; Zhou, Q.F. Piezoelectric materials for high frequency medical imaging applications: A review. J. Electroceramics 2007, 19, 139–145. [Google Scholar] [CrossRef]
- Martin, K.H.; Lindsey, B.D.; Ma, J.; Lee, M.; Li, S.; Foster, F.S.; Jiang, X.; Dayton, P.A. Dual-Frequency Piezoelectric Transducers for Contrast Enhanced Ultrasound Imaging. Sensors (Basel) 2014, 14, 20825–20842. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Ha, K.; Kim, M.; Kang, H.; Oh, J.; Kim, J. A circular array transducer for photoacoustic imaging by using piezoelectric single crystal lead magnesium niobate–lead zirconate titanate. Jpn. J. Appl. Phys. 2015, 54, 07HD08. [Google Scholar] [CrossRef]
- Akiyama, I.; Yoshizumi, N.; Saito, S.; Wada, Y.; Koyama, D.; Nakamura, K. Development of Multiple-Frequency Ultrasonic Imaging System Using Multiple Resonance Piezoelectric Transducer. Jpn. J. Appl. Phys. 2012, 51, 07GF02. [Google Scholar] [CrossRef]
- Kruger, R.A. Photoacoustic ultrasound. Med. Phys. 1994, 21, 127–131. [Google Scholar] [CrossRef]
- Vallet, M.; Varray, F.; Boutet, J.; Dinten, J.M.; Caliano, G.; Savoia, A.S.; Vray, D. Quantitative comparison of PZT and CMUT probes for photoacoustic imaging: Experimental validation. Photoacoustics 2017, 8, 48–58. [Google Scholar] [CrossRef]
- Dangi, A.; Agrawal, S.; Lieberknecht, J.; Zhang, J.; Kothapalli, S. Ring Ultrasound Transducer based Miniaturized Photoacoustic Imaging System. In 2018 IEEE SENSORS; IEEE: New Delhi, India, 2018; pp. 1–4. [Google Scholar]
- Paltauf, G.; Hartmair, P.; Kovachev, G.; Nuster, R. Piezoelectric line detector array for photoacoustic tomography. Photoacoustics 2017, 8, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, R.; Favazza, C.; Yao, J.; Li, C.; Zhou, Q.; Shung, K.K.; Wang, L.V. A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy. Opt. Express 2012, 20, 23944–23953. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.I.H.; Wong, L.L.P.; Yeow, J.T.W. Recent advances in capacitive micromachined ultrasonic transducer imaging systems. In Medical Imaging Technology Applications; CRC Press: Boca Raton, FL, USA, 2013; pp. 253–271. [Google Scholar]
- Liu, C.; Zhou, Q.; Djuth, F.T.; Shung, K.K. High-frequency (>50 MHz) medical ultrasound linear arrays fabricated from micromachined bulk PZT materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 315–318. [Google Scholar]
- Cabrera-munoz, N.E.; Eliahoo, P.; Wodnicki, R.; Jung, H.; Chiu, C.T.; Williams, J.A.; Kim, H.H.; Zhou, Q.; Shung, K.K. Forward-looking 30-MHz phased-array transducer for peripheral intravascular imaging. Sens. Actuators A Phys. 2018, 280, 145–163. [Google Scholar] [CrossRef]
- Khuri-Yakub, B.T.; Oralkan, Ö. Capacitive micromachined ultrasonic transducers for medical imaging and therapy. J. Micromech. Microeng. 2011, 21, 54004–54014. [Google Scholar] [CrossRef] [PubMed]
- Ergun, A.S.; Yaralioglu, G.G.; Khuri-Yakub, B.T. Capacitive Micromachined Ultrasonic Transducers: Theory and Technology. J. Aerosp. Eng. 2003, 16, 765–773. [Google Scholar] [CrossRef]
- Zheng, Z.; Na, S.; Chen, A.I.; Li, Z.; Wong, L.L.P.; Sun, Z.; Yao, Y.; Liu, P.; Yeow, J.T.W. Development of a Novel CMUT-Based Concentric Dual-Element Ultrasonic Transducer: Design, Fabrication, and Characterization. J. Microelectromech. Syst. 2018, 27, 538–546. [Google Scholar] [CrossRef]
- Chen, B.; Chu, F.; Liu, X.; Li, Y.; Rong, J.; Jiang, H. AlN-based piezoelectric micromachined ultrasonic transducer for photoacoustic imaging. Appl. Phys. Lett. 2013, 103, 1–4. [Google Scholar] [CrossRef]
- Liao, W.; Liu, W.; Rogers, J.E.; Usmani, F.; Tang, Y.; Wang, B.; Jiang, H.; Xie, H. Piezeoelectric micromachined ultrasound tranducer array for photoacoustic imaging. In 2013 Transducers & Eurosensors XXVII, Proceedings of the 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII), Barcelona, Spain, 16–20 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1831–1834. [Google Scholar]
- Qiu, Y.; Gigliotti, J.V.; Wallace, M.; Griggio, F.; Demore, C.E.M.; Cochran, S.; Trolier-mckinstry, S. Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging. Sensors (Switzerland) 2015, 15, 8020–8041. [Google Scholar] [CrossRef] [Green Version]
- Jathoul, A.P.; Laufer, J.; Ogunlade, O.; Treeby, B.; Cox, B.; Zhang, E.; Johnson, P.; Pizzey, A.R.; Philip, B.; Mara, T.; et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics 2015, 9, 239–246. [Google Scholar] [CrossRef]
- Zhang, E.; Laufer, J.; Beard, P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl. Opt. 2008, 47, 561. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ling, T.; Chen, S.; Guo, L.J. Ultrabroad Bandwidth and Highly Sensitive Optical Ultrasonic Detector for Photoacoustic Imaging. ACS Photonics 2014, 1, 1093–1098. [Google Scholar] [CrossRef]
- Lindsey, B.D.; Kim, J.; Dayton, P.A.; Jiang, X. Dual-Frequency Piezoelectric Endoscopic Transducer for Imaging Vascular Invasion in Pancreatic Cancer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Pang, Y.; Ku, G.; Xie, X.; Stoica, G.; Wang, L.V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Wygant, I.O.; Zhuang, X.; Kuo, P.S.; Yeh, D.T.; Oralkan, O.; Khuri-Yakub, B.T. Photoacoustic imaging using a two-dimensional CMUT array. In Proceedings of the 2005 IEEE Ultrasonics Symposium, Rotterdam, The Netherlands, 18–21 September 2005; Volume 4, pp. 1921–1924. [Google Scholar]
- Vaithilingam, S.; Ma, T.J.; Furukawa, Y.; Wygant, I.O.; Zhuang, X.; De La Zerda, A.; Oralkan, Ö.; Kamaya, A.; Gambhir, S.S.; Jeffrey, R.B.; et al. Three-dimensional photoacoustic imaging using a two-dimensional CMUT array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 2411–2419. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Chen, J.; Li, C. A miniature capacitive micromachined ultrasonic transducer array for minimally invasive photoacoustic imaging. J. Microelectromech. Syst. 2010, 19, 1002–1011. [Google Scholar] [CrossRef]
- Nikoozadeh, A.; Choe, J.W.; Kothapalli, S.R.; Moini, A.; Sanjani, S.S.; Kamaya, A.; Oralkan, O.; Gambhir, S.S.; Khuri-Yakub, P.T. Photoacoustic imaging using a 9F microLinear CMUT ICE catheter. In Proceedings of the 2012 IEEE International Ultrasonics Symposium (IUS), Dresden, Germany, 7–10 October 2012; pp. 24–27. [Google Scholar]
- Vaithilingam, S.; Wygant, I.O.; Sifferman, S.; Zhuang, X.; Furukawa, Y.; Oralkan, Ö.; Keren, S.; Gambhir, S.S.; Khuri-Yakub, B.T. 1E-3 Tomographic photoacoustic imaging using capacitive micromachined ultrasonic transducer (CMUT) technology. In Proceedings of the 2006 IEEE Ultrasonics Symposium, Vancouver, BC, Canada, 2–6 October 2006; pp. 397–400. [Google Scholar]
- Nikoozadeh, A.; Chang, C.; Choe, J.W.; Bhuyan, A.; Lee, B.C.; Moini, A.; Khuri-Yakub, P.T. An integrated Ring CMUT array for endoscopic ultrasound and photoacoustic imaging. In Proceedings of the 2013 IEEE International Ultrasonics Symposium(IUS), Prague, Czech Republic, 21–25 July 2013; pp. 1178–1181. [Google Scholar]
- Asao, Y.; Hashizume, Y.; Suita, T.; Nagae, K.; Fukutani, K.; Sudo, Y.; Matsushita, T.; Kobayashi, S.; Tokiwa, M.; Yamaga, I.; et al. Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images. J. Biomed. Opt. 2016, 21, 116009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micromachined, M.C.; Kothapalli, S.; Ma, T.; Vaithilingam, S.; Khuri-yakub, B.T.; Gambhir, S.S. Deep Tissue Photoacoustic Imaging Using a Miniaturized 2-D Capacitive Micromachined Ultrasonic Transducer Array. IEEE Trans. Biomed. Eng. 2012, 59, 1199–1204. [Google Scholar] [Green Version]
- Chee, R.K.W.; Sampaleanu, A.; Rishi, D.; Zemp, R.J. Top Orthogonal to Bottom Electrode (TOBE) 2-D CMUT Arrays for 3-D Photoacoustic Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 1393–1395. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, M.; Cheng, J.; Wang, Y.; Li, P.; Member, S. A Photoacoustic Imager with Light Illumination Through an Infrared-Transparent Silicon CMUT Array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, X.; Adelegan, O.J.; Yamaner, F.Y.; Oralkan, O. Backward-Mode Photoacoustic Imaging Using Illumination Through a CMUT with Improved Transparency. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ilkhechi, A.; Zemp, R. Transparent capacitive micromachined ultrasonic transducers (CMUTs) for photoacoustic applications. Opt. Express 2019, 27, 13204–13218. [Google Scholar] [CrossRef] [PubMed]
- Chee, R.K.W.; Zhang, P.; Maadi, M.; Zemp, R.J. Multifrequency interlaced CMUTs for photoacoustic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Pun, S.H.; Yu, Y.; Gao, D.; Wang, J.; Mak, P.U.; Lei, K.F.; Cheng, C.H.; Yuan, Z. Development of a multi-band photoacoustic tomography imaging system based on a capacitive micromachined ultrasonic transducer array. Appl. Opt. 2017, 56, 4012–4018. [Google Scholar] [CrossRef] [PubMed]
- Pun, S.H.; Yu, Y.; Zhang, J.; Wang, J.; Cheng, C.H.; Lei, K.F.; Yuan, Z.; Mak, P.U. Monolithic Multiband CMUTs for Photoacoustic Computed Tomography with In Vivo Biological Tissue Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 465–475. [Google Scholar] [CrossRef]
- Maadi, M.; Greenlay, B.; Ceroici, C.; Zemp, R.J. Multi-Frequency CMUT Imaging Arrays for Multi-Scale Imaging and Imaging-Therapy Applications. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017. [Google Scholar]
- Matsumoto, Y.; Asao, Y.; Sekiguchi, H.; Yoshikawa, A.; Ishii, T.; Nagae, K.; Kobayashi, S.; Tsuge, I.; Saito, S.; Takada, M.; et al. Visualising peripheral arterioles and venules through high-resolution and large-area photoacoustic imaging. Sci. Rep. 2018, 8, 14930. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Hæggstrom, E.O.; Zhuang, X.; Ergun, A.S.; Khuri-yakub, B.T. A Solution to the Charging Problems in Capacitive Micromachined Ultrasonic Transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Kupnik, M.; Ergun, A.S.; Huang, Y.; Khuri-yakub, B.T. 6F-2 Extended Insulation Layer Structure for CMUTs. In Proceedings of the 2007 IEEE International Ultrasonics Symposium (IUS), New York, NY, USA, 28–31 October 2007; Volume 1, pp. 511–514. [Google Scholar]
- Machida, S.; Takezaki, T.; Kobayashi, T.; Nagata, T.; Tanaka, H. Highly Reliable CMUT Cell Structure with Reduced Dielectric Charging Effect. In Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, China, 21–24 October 2015; pp. 1–4. [Google Scholar]
- Bayram, B.; Kupnik, M.; Yaralioglu, G.G.; Oralkan, O.; Ergun, A.S.; Lin, D.; Wong, S.H.; Khuri-yakub, B.T. Finite Element Modeling and Experimental Characterization of Crosstalk in 1-D CMUT Arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 418–430. [Google Scholar] [CrossRef]
- Zhou, S.; Hossack, J.A. Reducing Inter-Element Acoustic Crosstalk in Capacitive Micromachined Ultrasound Transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 1217–1228. [Google Scholar] [CrossRef]
- Lamberti, N.; Caliano, G.; Iula, A.; Stuart, A. A high frequency cMUT probe for ultrasound imaging of fingerprints. Sens. Actuators A. Phys. 2011, 172, 561–569. [Google Scholar] [CrossRef]
- Manwar, R.; Simpson, T.; Bakhtazad, A.; Chowdhury, S. Fabrication and characterization of a high frequency and high coupling coefficient CMUT array. Microsyst. Technol. 2017, 23, 4965–4977. [Google Scholar] [CrossRef]
- Yeh, D.T.; Oralkan, Ö.; Wygant, I.O.; Ergun, A.S.; Wong, J.H.; Khuri-yakub, B.T. High-Resolution Imaging with High-Frequency 1-D Linear CMUT Arrays. In Proceedings of the 2005 IEEE Ultrasonics Symposium, Rotterdam, The Netherlands, 18–21 September 2005; pp. 665–669. [Google Scholar]
- Micromachined, C.; Transducer, U.; Pang, D.; Chang, C. Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer. Sensors (Basel) 2017, 17, 1443. [Google Scholar] [Green Version]
- Zhuang, X.; Lin, D.; Oralkan, Ö.; Khuri-yakub, B.T. Fabrication of Flexible Transducer Arrays with Through-Wafer Electrical Interconnects Based on Trench Refilling with PDMS. J. Microelectromech. Syst. 2008, 17, 446–452. [Google Scholar] [CrossRef]
PAI Modalities | Typical Resolution Range | Typical Penetration Depth | Detector Center Frequency | Application |
---|---|---|---|---|
Photoacoustic computed tomography (PACT) [2,4,37,38,43,44] | >70 μm | 70 mm | <10 MHz, but higher frequency detectors have been used | Suitable for applications such as functional imaging that requires imaging deeper with a larger FOV |
Acoustic resolution photoacoustic microscopy (AR-PAM) [46,49,51,53,64] | >40 μm | 11 mm or even up to several centimeters with contrast agents | Ranges from 2 MHz to 40 MHz, depending on whether a higher resolution or deeper penetration depth is desired | Generally used in reflection mode application |
Optical resolution photoacoustic microscopy (OR-PAM) [15,46,48,57,58,59,60] | <10 μm | 1–2 mm | >20 MHz | Useful for imaging smaller samples that are near the surface including the blood vessels, and cells |
Detectors | Resolution (μm) | Penetration Depth (mm) | Sensitivity | Advantages | Disadvantages |
---|---|---|---|---|---|
Fabry–Perot interferometer (FPI) [67,68,69,70,111,112] | <10 | 0.7–20 | NEP: 80–300 Pa | - High-resolution image with small active area | - Challenging to fabricate into an array - Mechanical scanning - Smaller penetration depth |
Micro-ring resonator (MRR) [81,82,113] | <10 | 0.002–2.2 | NEP: 35–105 Pa | - Wide angular response - Low NEP over a wide frequency range | - Challenging to fabricate into an array - Mechanical scanning - Smaller penetration depth |
Piezoelectric transducer (PZT) [98,114,115] | 200 | >30 | SNR: 18–22 dB | - Most matured and readily available - Deeper penetration depth | - Opaque - Not CMOS compatible - Difficulty in fabricating high-density array |
Capacitive micromachined ultrasound transducer (CMUT) [116,117,118,119,120,121,122,123,124,125,126,127,128,129,130] | >80 | >50 | SNR: 22–87 dB | - CMOS compatible - High-density arrays can be fabricated - Deeper penetration depth | - DC voltage is needed - Dielectric charging |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, J.; Zheng, Z.; Bell, K.; Le, M.; Reza, P.H.; Yeow, J.T.W. Photoacoustic Imaging with Capacitive Micromachined Ultrasound Transducers: Principles and Developments. Sensors 2019, 19, 3617. https://doi.org/10.3390/s19163617
Chan J, Zheng Z, Bell K, Le M, Reza PH, Yeow JTW. Photoacoustic Imaging with Capacitive Micromachined Ultrasound Transducers: Principles and Developments. Sensors. 2019; 19(16):3617. https://doi.org/10.3390/s19163617
Chicago/Turabian StyleChan, Jasmine, Zhou Zheng, Kevan Bell, Martin Le, Parsin Haji Reza, and John T.W. Yeow. 2019. "Photoacoustic Imaging with Capacitive Micromachined Ultrasound Transducers: Principles and Developments" Sensors 19, no. 16: 3617. https://doi.org/10.3390/s19163617
APA StyleChan, J., Zheng, Z., Bell, K., Le, M., Reza, P. H., & Yeow, J. T. W. (2019). Photoacoustic Imaging with Capacitive Micromachined Ultrasound Transducers: Principles and Developments. Sensors, 19(16), 3617. https://doi.org/10.3390/s19163617