Abstract
Even if conventional optical imaging systems such as multiphoton microscopy (MPM), confocal microscopy (CM), fluorescence microscopy (FM), and optical coherence tomography (OCT) are regarded as revolutionary microscopic imaging modalities to reveal the inner information of biological tissues with very high spatial resolution, it is inherently restricted to image deep tissues due to strong optical scatting in biological tissues. Photoacoustic imaging (PAI) is a hybrid imaging modality to combine strong optical contrast and high ultrasonic resolution in deep tissues. In a microscopic imaging perspective, photoaocustic microscopy (PAM) can be implemented in two forms: optical-resolution (OR) and acoustic-resolution (AR) PAM. In OR-PAM, the lateral spatial resolution is determined by tight optical focusing, but the penetration depth is limited to one optical transport mean free path. In AR-PAM, the lateral spatial resolution is determined by loose acoustic focusing, but the penetration depth can be much enhanced and reach to several centimeters. Therefore, AR-PAM gains great attention for both preclinical and clinical applications. This review explains the principle, implementation, and applications of AR-PAM.
Similar content being viewed by others
References
Wang LV, Wu HI. Biomedical optics: principles and imaging. 1st ed. Wiley-Interscience; 2007.
Calasso IG, Craig W, Diebold GJ. Photoacoustic point source. Phys Rev Lett. 2001; 86(16):3550–3.
Grashin PS, Karabutov AA, Oraevsky AA, Pelivanov IM, Podymova NB, Savateeva EVe, Solomatin VS. Distribution of the laser radiation intensity in turbid media: Monte Carlo simulations, theoretical analysis, and results of optoacoustic measurements. Quantum Electron. 2002; doi:10.1070/QE2002v032n10ABEH002308.
Andreev VG, Karabutov AA, Oraevsky AA. Detection of ultrawide-band ultrasound pulses in optoacoustic tomography. IEEE T Ultrason Ferr. 2003; 50(10):1383–90.
Zhang EZ, Laufer JG, Pedley RB, Beard PC. In vivo highresolution 3D photoacoustic imaging of superficial vascular anatomy. Phys Med Biol. 2009; 54(4):1035–46.
Zhang HF, Maslov K, Stoica G, Wang LV. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol. 2006; 24(7):848–51.
Maslov K, Zhang HF, Hu S, Wang LV. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett. 2008; 33(9):929–31.
Chen SL, Burnett J, Sun D, Wei X, Xie Z, Wang X. Photoacoustic microscopy: a potential new tool for evaluation of angiogenesis inhibitor. Biomed Opt Express. 2013; 4(11):2657–66.
Ruan Q, Xi L, Boye SL, Han S, Chen ZJ, Hauswirth WW, Lewin AS, Boulton ME, Law BK, Jiang WG, Jiang H, Cai J. Development of an anti-angiogenic therapeutic model combining scAAV2-delivered siRNAs and noninvasive photoacoustic imaging of tumor vasculature development. Cancer Lett. 2013; 332(1):120–9.
Foo SS, Abbott DF, Lawrentschuk N, Scott AM. Functional imaging of intratumoral hypoxia. Mol Imaging Biol. 2004; 6(5):291–305.
Jo JG, Yang XM. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride. J Biomed Opt. 2011; doi:10.1117/1.3626576.
Yao J, Maslov KI, Zhang Y, Xia Y, Wang LV. Label-free oxygen-metabolic photoacoustic microscopy in vivo. J Biomed Opt. 2011; doi:10.1117/1.3594786.
Brunker J, Beard P. Pulsed photoacoustic Doppler flowmetry using time-domain cross-correlation: accuracy, resolution and scalability. J Acoust Soc Am. 2012; 132(3):1780–91.
Shah J, Park S, Aglyamov S, Larson T, Ma L, Sokolov K, Johnston K, Milner T, Emelianov SY. Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J Biomed Opt. 2008; doi:10.1117/1.2940362.
Pramanik M, Wang LV. Thermoacoustic and photoacoustic sensing of temperature. J Biomed Opt. 2009; doi:10.1117/1.3247155.
Liu T, Wei Q, Wang J, Jiao S, Zhang HF. Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen. Biomed Opt Express. 2011; 2(5):1359–65.
Yao J, Xia J, Maslov KI, Nasiriavanaki M, Tsytsarev V, Demchenko AV, Wang LV. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. Neuroimage. 2013; 64:257–66.
Pu K, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS, Bao Z, Rao J. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol. 2014; 9(3):233–9.
Huynh E, Lovell JF, Helfield BL, Jeon M, Kim C, Goertz DE, Wilson BC, Zheng G. Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J Am Chem Soc. 2012; 134(40):16464–7.
Kim G, Huang SW, Day KC, O’Donnell M, Agayan RR, Day MA, Kopelman R, Ashkenazi S. Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging. J Biomed Opt. 2007; doi:10.1117/1.2771530.
Li K, Liu B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev. 2014; 43(18):6570–97.
Cho EC, Kim C, Zhou F, Cobley CM, Song KH, Chen J, Li ZY, Wang LV, Xia Y. Measuring the optical absorption cross sections of Au Ag nanocages and Au nanorods by photoacoustic imaging. J Phys Chem C Nanomater Interfaces. 2009; 113(21): 9023–8.
Zhang Y, Jeon M, Rich LJ, Hong H, Geng J, Zhang Y, Shi S, Barnhart TE, Alexandridis P, Huizinga JD, Seshadri M, Cai W, Kim C, Lovell JF. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol. 2014; 9(8):631–8.
Li PC, Wei CW, Liao CK, Chen CD, Pao KC, Wang CR, Wu YN, Shieh DB. Photoacoustic imaging of multiple targets using gold nanorods. IEEE T Ultrason Ferr. 2007; 54(8):1642–7.
Pramanik M, Swierczewska M, Wang LV, Green D, Sitharaman B. Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J Biomed Opt. 2009; doi:10.1117/1.3147407.
Pan D, Pramanik M, Senpan A, Yang X, Song KH, Scott MJ, Zhang H, Gaffney PJ, Wickline SA, Wang LV, Lanza GM. Molecular photoacoustic tomography with colloidal nanobeacons. Angewandte Chemie International Edition. 2009; 48(23):4170–3.
Jeon M, Song W, Huynh E, Kim J, Kim J, Helfield BL, Leung BY, Goertz DE, Zheng G, Oh J. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging. J Biomed Opt. 2014; 19(1):16005. doi:10.1117/1.JBO.19.1.016005.
Ohulchanskyy TY, Kopwitthaya A, Jeon M, Guo M, Law W-C, Furlani EP, Kim C, Prasad PN. Phospholipid micelle-based magneto-plasmonic nanoformulation for magnetic field-directed, imaging-guided photo-induced cancer therapy. Nanomedicine: Nanotechnol Biol Med. 2013; 9(8):1192–202.
Kim C, Favazza C, Wang LV. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev. 2010; 110(5):2756–82.
Wang LV. Tutorial on photoacoustic microscopy and computed tomography. IEEE J Sel Top Quant. 2008; 14(1):171–9.
Yao J, Wang L. Multi-scale multi-contrast photoacoustic microscopy. Frontiers Opt. 2013; doi:10.1364/FIO.2013.FM4A.1.
Jeon M, Kim J, Kim C. Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo. Med Biol Eng Comput. 2014; doi:10.1007/s11517-014-1182-6.
Maslov K, Stoica G, Wang LV. In vivo dark-field reflectionmode photoacoustic microscopy. Opt Lett. 2005; 30(6):625–7.
Hu S, Maslov K, Wang LV. Second-generation opticalresolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett. 2011; 36(7):1134–6.
Han S, Lee C, Kim S, Jeon M, Kim J, Kim C. In vivo virtual intraoperative surgical photoacoustic microscopy. Appl Phys Lett. 2013; 103(20):2037–2.
Cai X, Paratala BS, Hu S, Sitharaman B, Wang LV. Multiscale photoacoustic microscopy of single-walled carbon nanotubeincorporated tissue engineering scaffolds. Tissue Eng Part CMethods. 2012; 18(4):310–7.
Xing WX, Wang LD, Maslov K, Wang LV. Integrated opticaland acoustic-resolution photoacoustic microscopy based on an optical fiber bundle. Opt Lett. 2013; 38(1):52–4.
Purushotham AD, Upponi S, Klevesath MB, Bobrow L, Millar K, Myles JP, Duffy SW. Morbidity after sentinel lymph node biopsy in primary breast cancer: results from a randomized controlled trial. J Clin Oncol. 2005; 23(19):4312–21.
Krishnamurthy S, Sneige N, Bedi DG, Edieken BS, Fornage BD, Kuerer HM, Singletary SE, Hunt KK. Role of ultrasoundguided fine-needle aspiration of indeterminate and suspicious axillary lymph nodes in the initial staging of breast carcinoma. Cancer. 2002; 95(5):982–8.
Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exper Med. 2007; 204(10):2349–62.
Li L, Liu C, Ren H, Wang QH. Adaptive liquid iris based on electrowetting. Opt Lett. 2013; 38(13):2336–8.
Song L, Kim C, Maslov K, Shung KK, Wang LV. High-speed dynamic 3D photoacoustic imaging of sentinel lymph node in a murine model using an ultrasound array. Med Phys. 2009; 36(8):3724–9.
Kim C, Song KH, Gao F, Wang LV. Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats-volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging. Radiology. 2010; 255(2):442–50.
Liu X, Lee C, Law WC, Zhu DW, Liu MX, Jeon M, Kim J, Prasad PN, Kim C, Swihart MT. Au-Cu2-xSe heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. Nano Lett. 2013; 13(9):4333–9.
Luther JM, Jain PK, Ewers T, Alivisatos AP. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat Mater. 2011; 10(5):361–6.
Dorfs D, Hartling T, Miszta K, Bigall NC, Kim MR, Genovese A, Falqui A, Povia M, Manna L. Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals. J Am Chem Soc. 2011; 133(29):11175–80.
Zhao Y, Pan H, Lou Y, Qiu X, Zhu J, Burda C. Plasmonic Cu2 x S nanocrystals: optical and structural properties of copper-deficient copper (I) Sulfides. J Am Chem Soc. 2009; 131(12):4253–61.
Liu X, Law WC, Jeon M, Wang X, Liu M, Kim C, Prasad PN, Swihart MT. Cu2-xSe nanocrystals with localized surface plasmon resonance as sensitive contrast agents for in vivo photoacoustic imaging: demonstration of sentinel lymph node mapping. Adv Healthc Mater. 2013; 2(7):952–7.
Koo J, Jeon M, Oh Y, Kang HW, Kim J, Kim C, Oh J. In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes. Phys Med Biol. 2012; 57(23):7853–62.
De La Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma TJ, Oralkan O, Cheng Z, Chen X, Dai H, Khuri-Yakub BT, Gambhir SS. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol. 2008; 3(9):557–62.
Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009; 2(2):85–120.
Pramanik M, Song KH, Swierczewska M, Green D, Sitharaman B, Wang LV. In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node. Phys Med Biol. 2009; 54(11):3291–301.
O’connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE. Band gap fluorescence from individual single-walled carbon nanotubes. Science. 2002; 297(5581):593–6.
Scardapane A, Pagliarulo V, Ianora AA, Pagliarulo A, Angelelli G. Contrast-enhanced multislice pneumo-CT-cystography in the evaluation of urinary bladder neoplasms. Eur J Radiol. 2008; 66(2):246–52.
Rothwell RI, Ash DV, Jones WG. Radiation treatment planning for bladder cancer: a comparison of cystogram localisation with computed tomography. Clin Radiol. 1983; 34(1):103–11.
Browne RF, Murphy SM, Grainger R, Hamilton S. CT cystography and virtual cystoscopy in the assessment of new and recurrent bladder neoplasms. Eur J Radiol. 2005; 53(1):147–53.
Lim R. Vesicoureteral reflux and urinary tract infection: evolving practices and current controversies in pediatric imaging. Am J Roentgenol. 2009; 192(5):1197–208.
Brown MC, Sutherst JR, Murray A, Richmond DH. Potential use of ultrasound in place of X-ray fluoroscopy in urodynamics. Br J Urol. 1985; 57(1):88–90.
Vining DJ, Zagoria RJ, Liu K, Stelts D. CT cystoscopy: an innovation in bladder imaging. Am J Roentgenol. 1996; 166(2):409–10.
Kim C, Jeon M, Wang LV. Nonionizing photoacoustic cystography in vivo. Opt Lett. 2011; 36(18):3599–601.
Kim C, Cho EC, Chen J, Song KH, Au L, Favazza C, Zhang Q, Cobley CM, Gao F, Xia Y, Wang LV. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano. 2010; 4(8):4559–64.
Jeon M, Jenkins S, Oh J, Kim J, Peterson T, Chen J, Kim C. Nonionizing photoacoustic cystography with near-infrared absorbing gold nanostructures as optical-opaque tracers. Nanomedicine. 2013; 9(9):1377–88.
Srivatsan A, Jenkins SV, Jeon M, Wu Z, Kim C, Chen J, Pandey RK. Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Theranostics. 2014; 4(2):163–74.
Soffer E. Small bowel motility: Ready for prime time?. Curr Gastroenterol Rep. 2000; 2(5):364–9.
Ohama T, Hori M, Ozaki H. Mechanism of abnormal intestinal motility in inflammatory bowel disease: how smooth muscle contraction is reduced?. J Smooth Muscle Res. 2007; 43(2):43–54.
Lembo A, Camilleri M. Chronic constipation. New England J Med. 2003; 349(14):1360–8.
Abrahamsson H. Gastrointestinal motility disorders in patients with diabetes mellitus. J Intern Med. 1995; 237(4):403–9.
Shafer RB, Prentiss RA, Bond JH. Gastrointestinal transit in thyroid disease. Gastroenterology. 1984; 86(5 Pt 1):852–5.
Jost WH. Gastrointestinal motility problems in patients with Parkinson’s disease. Drugs Aging. 1997; 10(4):249–58.
Dye CE, Gaffney RR, Dykes TM, Moyer MT. Endoscopic and radiographic evaluation of the small bowel in 2012. Am J Med. 2012; doi: 10.1016/j.amjmed.2012.06.017.
Zhang Y, Jeon M, Rich LJ, Hong H, Geng J, Zhang Y, Shi S, Barnhart TE, Alexandridis P, Huizinga JD, Seshadri M, Cai W, Kim C, Lovell JF. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol. 2014; 9(8):631–8.
Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC. In vivo small animal imaging: current status and future prospects. Med Phys. 2010; 37(12):6421–42.
Foster FS, Hossack J, Adamson SL. Micro-ultrasound for preclinical imaging. Interface Focus. 2011; 1(4):576–601.
Ritman EL. Current status of developments and applications of micro-CT. Annu Rev Biomed Eng. 2011; 13:531–52.
Goetz C, Breton E, Choquet P, Israel-Jost V, Constantinesco A. SPECT low-field MRI system for small-animal imaging. J Nucl Med. 2008; 49(1):88–93.
Judenhofer MS, Cherry SR. Applications for preclinical PET/ MRI. Seminars Nucl Med. 2013; 43(1):19–29.
Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010; 7(8):603–14.
Biosphera Home Page. http://www.biosphera.com.br. Accessed 2-Oct-2014.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Park, S., Lee, C., Kim, J. et al. Acoustic resolution photoacoustic microscopy. Biomed. Eng. Lett. 4, 213–222 (2014). https://doi.org/10.1007/s13534-014-0153-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13534-014-0153-z