Influence of Spatial Resolution on Remote Sensing-Based Irrigation Performance Assessment Using WaPOR Data
"> Figure 1
<p>Location of irrigation schemes: (1) Wonji, (2) Metehara, (3) ODN, (4) Koga, (5) Zankalon.</p> "> Figure 2
<p>Box and whisker plot showing annual mean, quartiles and range relative ET of the (<b>a</b>) Wonji and (<b>b</b>) Metehara schemes for the L1, L2, and L3 resolutions.</p> "> Figure 3
<p>Average plot adequacy (relative ETa) in 2018 for the (upper) Wonji and (lower) Metehara schemes for L1, L2, and L3 resolution.</p> "> Figure 4
<p>Annual intra-plot ETIa CV in each scheme: (<b>a</b>) Wonji, (<b>b</b>) Metehara, (<b>c</b>) ODN, (<b>d</b>) Koga, and (<b>e</b>) Zankalon.</p> "> Figure 5
<p>Average plot ETIa in 2018 for the (upper) Zankalon and (lower) Metehara schemes to compare three levels of spatial resolution (L1, L2, L3).</p> "> Figure 6
<p>Dekadal intra-plot CV of ETIa for each irrigation scheme.</p> "> Figure 7
<p>Average plot CWP (2018) in the (upper) Wonji, (middle) ODN, and (lower) Koga (lower) for the L1, L2 and L3 resolutions.</p> "> Figure 8
<p>WaPOR-derived AGBPe for L3 (left), L2 (middle), and L1 (right) compared against AGBPa.</p> "> Figure 9
<p>WaPOR dekadal (<b>a</b>) L3, (<b>b</b>) L2 and (<b>c</b>) L1 ETIa (mm/day) compared to in-situ dekadal ETa (mm/day).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scheme Descriptions
2.2. Input Datasets
2.2.1. Evapotranspiration and Interception
2.2.2. Aboveground Biomass Productivity
2.2.3. Reference Evapotranspiration
2.3. Performance Indicators
- Adequacy—The sufficiency of water use to meet the crop water requirement (CWR) or potential evapotranspiration;
- Equity—The fairness of irrigation water distribution;
- CWP—The unit of physical crop production or yield per unit water consumed.
2.4. Validation
3. Results
3.1. ETIa and AGBP
3.2. Adequacy
3.3. Equity
3.4. Productivity
3.5. Validation-Evaluation of the WaPOR Dataset
4. Discussion
5. Conclusions
- Spatial resolutions of 250 m, 100 m, and 30 m are suitable for inter-annual and inter-scheme assessments for adequacy, equity, and CWP, regardless of plot size.
- Spatial resolutions of 250 m and 100 m should not be used for inter-plot comparison for adequacy, equity, or CWP on plots <2 ha. The 30 m resolution may also be too coarse, and Sentinel-2 application should be considered.
- Spatial resolutions of 250 m and 100 m show general spatiotemporal trends for adequacy, equity, and CWP within a scheme, but not the full extent of plot-to-plot variation for all plot sizes tested.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frenken, K. (Ed.) Irrigation in Africa in Figures, FAO WATER REPORTS 29, AQUASTAT Survey, FAO Land and Water Development Division; FAO: Rome, Italy, 2005; ISBN 9251054142. [Google Scholar]
- Kharrou, M.H.; Le Page, M.; Chehbouni, A.; Simonneaux, V.; Er-Raki, S.; Jarlan, L.; Ouzine, L.; Khabba, S.; Chehbouni, G. Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco. Water Resour. Manag. 2013, 27, 4697–4714. [Google Scholar] [CrossRef]
- Alexandridis, T.; Asif, S.; Ali, S. Water Performance Indicators Using Satellite Imagery for the Fordwah Eastern Sadiqia (South). Irrigation and Drainage Project; IWMI Pakistan Program; Int’l Water Management Institute (IWMI): Colombo, Sri Lanka, 1999. [Google Scholar]
- Bastiaanssen, W.G.M.; Bandara, K. Evaporative depletion assessments for irrigated watersheds in Sri Lanka. Irrig. Sci. 2001. [Google Scholar] [CrossRef]
- Nouri, H.; Stokvis, B.; Borujeni, S.C.; Galindo, A.; Brugnach, M.; Blatchford, M.L.; Alaghmand, S.; Hoekstra, A.Y. Reduce blue water scarcity and increase nutritional and economic water productivity through changing the cropping pattern in a catchment. J. Hydrol. 2020, 588, 125086. [Google Scholar] [CrossRef]
- Roerink, G.J.; Bastiaanssen, W.G.M.G.M.; Chambouleyron, J.; Menenti, M. Relating Crop Water Consumption to Irrigation Water Supply by Remote Sensing. Water Resour. Manag. 1997, 11, 445–465. [Google Scholar] [CrossRef]
- Blatchford, M.L.; Karimi, P.; Bastiaanssen, W.G.M.; Nouri, H. From Global Goals to Local Gains—A Framework for Crop Water Productivity. ISPRS Int. J. Geo-Inf. 2018, 7, 414. [Google Scholar] [CrossRef] [Green Version]
- Karimi, P.; Molden, D.; Notenbaert, A.; Peden, D. Nile basin farming systems and productivity. In The Nile River Basin: Water, Agriculture, Governance and Livelihoods; Awulachew, S.B., Smakhtin, V., Molden, D., Peden, D., Eds.; Routledge–Earthscan: Abingdon, UK, 2012; pp. 133–153. [Google Scholar]
- Hellegers, P.J.; Soppe, R.; Perry, C.J.; Bastiaanssen, W.G.M. Remote Sensing and Economic Indicators for Supporting Water Resources Management Decisions. Water Resour. Manag. 2010, 24, 2419–2436. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.M.; Brito, R.A.L.; Bos, M.G.; Souza, R.A.; Cavalcanti, E.B.; Bakker, M.M. Low cost satellite data for monthly irrigation performance monitoring: Benchmarks from Nilo Coelho, Brazil. Irrig. Drain. Syst. 2001, 15, 53–79. [Google Scholar] [CrossRef] [Green Version]
- Blatchford, M.L.; Mannaerts, C.M.; Zeng, Y.; Nouri, H.; Karimi, P. Status of accuracy in remotely sensed and in-situ agricultural water productivity estimates: A review. Remote Sens. Environ. 2019, 234, 111413. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Van Der Wal, T.; Visser, T.N.M. Diagnosis of regional evaporation by remote sensing to support irrigation performance assessment. Irrig. Drain. Syst. 1996, 10, 1–23. [Google Scholar] [CrossRef]
- Taghvaeian, S.; Neale, C.M.U.; Osterberg, J.C.; Sritharan, S.I.; Watts, D.R. Remote Sensing and GIS Techniques for Assessing Irrigation Performance: Case Study in Southern California. J. Irrig. Drain. Eng. 2018, 144, 05018002. [Google Scholar] [CrossRef]
- Elnmer, A.; Khadr, M.; Allam, A.; Kanae, S.; Tawfik, A. Assessment of irrigation water performance in the nile delta using remotely sensed data. Water 2018, 10, 1375. [Google Scholar] [CrossRef] [Green Version]
- Karimi, P.; Bongani, B.; Blatchford, M.L.; de Fraiture, C.; Bhembe, B.; Blatchford, M.L.; de Fraiture, C. Global satellite-based ET and Precipitation products for the local level irrigation management: Part 2—An application for irrigation performance assessment in the sugarbelt of Swaziland. Remote Sens. 2019, 11, 705. [Google Scholar] [CrossRef] [Green Version]
- de Teixeira, A.H.C.; Bastiaanssen, W.G.M.; Ahmad, M.D.; Bos, M.G. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle Sao Francisco River basin, Brazil. Part B: Application to the regional scale. Agric. For. Meteorol. 2009, 149, 477–490. [Google Scholar] [CrossRef] [Green Version]
- Zwart, S.J.; Leclert, L.M.C. A remote sensing-based irrigation performance assessment: A case study of the Office du Niger in Mali. Irrig. Sci. 2010, 28, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Guillevic, P.C.; Olioso, A.; Hook, S.J.; Fisher, J.B.; Lagouarde, J.P.; Vermote, E.F. Impact of the revisit of thermal infrared remote sensing observations on evapotranspiration uncertainty—A sensitivity study using AmeriFlux Data. Remote Sens. 2019, 11, 573. [Google Scholar] [CrossRef] [Green Version]
- Durgam, O.Y.; Gobin, A.; Duveiller, G.; Tychon, B. A study on trade-offs between spatial resolution and temporal sampling density for wheat yield estimation using both thermal and calendar time. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 101988. [Google Scholar] [CrossRef]
- Duveiller, G. Caveats in calculating crop specific pixel purity for agricultural monitoring using MODIS time series. In Proceedings of the SPIE, Moscone Center, San Francisco, CA, USA, 21–26 January 2012; Volume 8531, pp. 1–10. [Google Scholar] [CrossRef]
- Sharma, V.; Kilic, A.; Irmak, S. Impact of scale/resolution on evapotranspiration from Landsat and MODIS images. Water Resour. Res. 2016, 52, 1800–1819. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Su, Z.; Van Der Velde, R.; Wang, L.; Xu, K.; Wang, X.; Wen, J. Blending satellite observed, model simulated, and in situ measured soil moisture over Tibetan Plateau. Remote Sens. 2016, 8, 268. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, R.; Zeng, Y.; Manfreda, S.; Su, Z. Quantifying long-term land surface and root zone soil moisture over Tibetan plateau. Remote Sens. 2020, 12, 509. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Chen, Y.; Li, J.; Dou, W. The impact of spatial resolution on NDVI over heterogeneous surface. In Proceedings of the IEEE, Bejing, China, 25–27 July 2005; pp. 1310–1313. [Google Scholar] [CrossRef]
- Teillet, P.M.; Staenz, K.; Williams, D.J. Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions. Remote Sens. Environ. 1997, 61, 139–149. [Google Scholar] [CrossRef]
- Ramírez-Cuesta, J.M.; Allen, R.G.; Zarco-Tejada, P.J.; Kilic, A.; Santos, C.; Lorite, I.J. Impact of the spatial resolution on the energy balance components on an open-canopy olive orchard. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 88–102. [Google Scholar] [CrossRef]
- Nouri, H.; Nagler, P.; Chavoshi, S.; Noori, B.; Barreto, A.; Sina, M.; Galindo, A. Effect of spatial resolution of satellite images on estimating the greenness and evapotranspiration of urban green spaces. Hydrol. Process. 2020, 3183–3199. [Google Scholar] [CrossRef]
- Vanikiotis, T.; Stagakis, S.; Kyparissis, A. Effects of satellite spatial resolution on gross primary productivity estimation through light use efficiency modeling. In Proceedings of the Proc. SPIE 10773, Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018), Paphos, Cyprus, 6 August 2018; p. 107731R. [Google Scholar]
- Hatfield, J.L.; Prueger, J.H.; Kustas, W.P.; Anderson, M.C.; Alfieri, J.G. Evapotranspiration: Evolution of Methods to Increase Spatial and Temporal Resolution. In Improving Modeling Tools to Assess Climate Change Effects on Crop Response; American Society of Agronomy: Madison, WI, USA, 2016; Volume 7. [Google Scholar] [CrossRef]
- Ershadi, A.; Mccabe, M.F.; Evans, J.P.; Walker, J.P. Effects of spatial aggregation on the multi-scale estimation of evapotranspiration. Remote Sens. Environ. 2013, 131, 51–62. [Google Scholar] [CrossRef]
- Pax-Lenney, M.; Woodcock, C.E. The effect of spatial resolution on the ability to monitor the status of agricultural lands. Remote Sens. Environ. 1997, 61, 210–220. [Google Scholar] [CrossRef]
- AutoCAD v22.0. AutoCAD Computer-Aided Design Software; AutoDesk Inc., 2019; Available online: https://autodesk.com (accessed on 30 January 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 30 January 2020).
- ArcGIS v.10.8. ESRI ArcGIS Geospatial Processing Program. 2020. Available online: https://desktop.arcgis.com (accessed on 30 January 2020).
- FAO. WaPOR Database Methodology: Level 1. Remote Sensing for Water Productivity Technical Report: Methodology Series; FAO: Rome, Italy, 2018; ISBN 9789251097694. [Google Scholar]
- FAO WaPOR—The FAO Portal to Monitor WAter Productivity through Open Access of Remotely Sensed Derived Data. Available online: https://wapor.apps.fao.org/home/WAPOR_2/1 (accessed on 30 January 2020).
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelgrum, H.; Miltenburg, I.J.; Cheema, M.J.M.; Klaasse, A.; Bastiaanssen, W.G.M. ET Look: A novel continental evapotranspiration algorithm. IAHS-AISH Publ. 2012, 352, 120–123. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 9251042195. [Google Scholar]
- Karatas, B.S.; Akkuzu, E.; Unal, H.B.; Asik, S.; Avci, M. Using satellite remote sensing to assess irrigation performance in Water User Associations in the Lower Gediz Basin, Turkey. Agric. Water Manag. 2009, 96, 982–990. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Bos, M.G. Irrigation performance indicators based on remotely sensed data: A review of literature. Irrig. Drain. Syst. 1999, 13, 291–311. [Google Scholar] [CrossRef]
- Abernethy, C.L. Indicators of the performance of irrigation water distribution systems. In Proceedings of the Symposium on the Performance Evaluation of Irrigation Systems, Colombo, Sri Lanka, 23 November 1990; International Irrigation Management Institute (IIMI): Colombo, Sri Lanka, 1990; p. 22. [Google Scholar]
- Pinter, P.J.J.; Hatfield, J.L.L.; Schepers, J.S.S.; Barnes, E.M.M.; Moran, M.S.S.; Daughtry, C.S.; Upchurch, D.R.R. Remote sensing for crop management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [Google Scholar] [CrossRef] [Green Version]
- Oweis, T.; Hachum, A. 11 Improving Water Productivity in the Dry Areas of West Asia and North Africa. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; CABI Publ.: Boston, MA, USA, 2003. [Google Scholar]
- Bossio, D.; Geheb, K. Conserving Land, Protecting Water; CABI Publ.: Boston, MA, USA, 2008; ISBN 9781845933876. [Google Scholar]
- Sadras, V.O.; Grassini, P.; Steduto, P. Status of water use efficiency of main crops. SOLAW Background Thematic Report-TR07; FAO: Rome, Italy, 2007. [Google Scholar]
- French, R.; Schultz, J. Water use efficiency of wheat in a Mediterranean-type environment. I. The relation between yield, water use and climate. Crop Pasture Sci. 1984. [Google Scholar] [CrossRef]
- Van Wart, J.; van Bussel, L.G.J.; Wolf, J.; Licker, R.; Grassini, P.; Nelson, A.; Boogaard, H.; Gerber, J.; Mueller, N.D.; Claessens, L.; et al. Use of agro-climatic zones to upscale simulated crop yield potential. Field Crop. Res. 2013, 143, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Asrar, G.; Kanemasu, E.T. Intercepted photosynthetically active radiation estimated by spectral reflectance. Remote Sens. Environ. 1984, 14, 65–75. [Google Scholar] [CrossRef]
- Ali, M.H.; Talukder, M.S.U. Increasing water productivity in crop production-A synthesis. Agric. Water Manag. 2008, 95, 1201–1213. [Google Scholar] [CrossRef]
- Kijne, J.W.; Barker, R.; Molden, D. Improving Water Productivity in Agriculture: Editors’ Overview. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Int’l Water Management Institute (IWMI): Colombo, Sri Lanka, 2003; pp. xi–xix. ISBN 9780851996691. [Google Scholar]
- Sugita, M.; Matsuno, A.; El-Kilani, R.M.M.; Abdel-Fattah, A.; Mahmoud, M.A. Crop evapotranspiration in the Nile Delta under different irrigation methods. Hydrol. Sci. J. 2017, 62, 1618–1635. [Google Scholar] [CrossRef] [Green Version]
- Blatchford, M.L.; Mannaerts, C.M.; Njuki, S.M.; Nouri, H.; Zeng, Y.; Pelgrum, H.; Wonink, S.; Karimi, P. Evaluation of WaPOR V2 evapotranspiration products across Africa. Hydrol. Process. 2020. [Google Scholar] [CrossRef]
- Yilma, W.A. Computation and Spatial Observation of Water Productivity in Awash River Basin. Master’s Thesis, IHE Delft, Delft, The Netherlands, 2017. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water; FAO Irrigation & Drainage Paper #66; FAO: Rome, Italy, 2012; ISBN 9789251072745. [Google Scholar]
- Fanadzo, M.; Chiduza, C.; Mnkeni, P.N.S. Overview of smallholder irrigation schemes in south Africa: Relationship between farmer crop management practices and performance. Afric. J. Agric. Res. 2010, 5, 3514–3523. [Google Scholar] [CrossRef]
- Jarchow, C.J.; Didan, K.; Barreto-Muñoz, A.; Nagler, P.L.; Glenn, E.P. Application and comparison of the MODIS-derived enhanced vegetation index to VIIRS, landsat 5 TM and landsat 8 OLI platforms: A case study in the arid colorado river delta, Mexico. Sensors 2018, 18, 1546. [Google Scholar] [CrossRef] [Green Version]
- Albarakat, R.; Lakshmi, V. Comparison of normalized difference vegetation index derived from landsat, MODIS, and AVHRR for the mesopotamian marshes between 2002 and 2018. Remote Sens. 2019, 11, 1245. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Su, Z.; Calvet, J.C.; Manninen, T.; Swinnen, E.; Schulz, J.; Roebeling, R.; Poli, P.; Tan, D.; Riihelä, A.; et al. Analysis of current validation practices in Europe for space-based climate data records of essential climate variables. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 150–161. [Google Scholar] [CrossRef]
- Zeng, Y.; Su, Z.; Barmpadimos, I.; Perrels, A.; Poli, P.; Boersma, K.F.; Frey, A.; Ma, X.; de Bruin, K.; Goosen, H.; et al. Towards a Traceable Climate Service: Assessment of Quality and Usability of Essential Climate Variables. Remote Sens. 2019, 11, 1186. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
Wonji | Metehara | Office Du Niger (ODN) | Koga | Zankalon | |
---|---|---|---|---|---|
Average plot size in irrigated area (ha) | 13.04 | 8.83 | 5.93 | 0.24 | 0.21 |
SD plot area (ha)|CV | 6.41|0.49 | 5.58|0.63 | 0.46|0.08 | 0.12|0.50 | 0.13|0.62 |
Major crops in irrigated area | Sugarcane | Sugarcane | Rice, sugarcane | Wheat, maize, potato, onion, cabbage, barley | Wheat, rice, maize, cotton, sugar beet, berseem, fava bean, tomato, potato |
Area (ha) | 6130 | 6954 | 1773 | 145 | 126 |
Min|Max elevation (msl) | 1539|1546 | 950|982 | 278|286 | 2009|2051 | 6|15 |
Dataset | Level | Spatial Resolution | Temporal Resolution | Satellite | Sensor Resolution |
---|---|---|---|---|---|
ETIa, NPP | Continental (L1) | 250 m | * Dekadal | MODIS | 250 m|1-day |
ETIa, NPP | National (L2) | 100 m | Dekadal | ** MODIS ** PROBA-V | 250 m|1-day 100 m|2-day |
ETIa, NPP | Sub-national (L3) | 30 m | Dekadal | Landsat | 30 m|16-day |
ETo | Continental (L1) | 25 km | 1-day | - | - |
Criteria | Performance Indicator | Definition | Applied Irrigation Schemes |
---|---|---|---|
Adequacy | Relative evapotranspiration | Metehara, Wonji | |
Equity | CV of evapotranspiration | All | |
Productivity | CWP | All |
Factor | WaPOR AGBP | AGBPa | Conversion Factor * |
---|---|---|---|
LUE (gC/MJ) | 2.7 | 2.6 [55] | 0.96 |
Moisture content (-) | - | 0.65 [56] | |
Above ground fraction (-) | 0.65 | 0.8 [56] | 1.23 |
HI | - | 0.95 | 0.95 |
Product | Dataset | Wonji | Metehara | ODN | Koga | Zankalon |
---|---|---|---|---|---|---|
ETIa (mm/year) | L3 (30 m) | 1498 (0.17) | 1648 (0.34) | 1832 (0.14) | 793 (0.19) | 1394 (0.12) |
L2 (100 m) | 1433 (0.12) | 1557 (0.34) | 1664 (0.12) | 884 (0.15) | 1368 (0.09) | |
L1 (250 m) | 1480 (0.11) | 1591 (0.33) | 1736 (0.13) | 926 (0.16) | 1406 (0.08) | |
AGBP (ton/ha) | L3 (30 m) | 37.2 (0.21) | 46.2 (0.16) | 16.4 (0.27) | 2.3 (0.19) | 2.3 (0.16) |
L2 (100 m) | 40.1 (0.14) | 49.1 (0.16) | 16.1 (0.19) | 2.9 (0.15) | 2.4 (0.11) | |
L1 (250 m) | 40.0 (0.14) | 48.7 (0.15) | 16.1 (0.20) | 2.9 (0.16) | 2.4 (0.10) |
Product | Dataset | Wonji * | Metehara * | ODN | Koga | Zankalon |
---|---|---|---|---|---|---|
AGBP or CWP (kg/m3) | L3 | 3.7 (0.08) | 2.4 (0.10) | 1.4 (0.16) | 3.5 (0.09) | 3.0 (0.05) |
L2 | 4.3 (0.05) | 2.8 (0.07) | 1.5 (0.05) | 4.5 (0.09) | 3.0 (0.04) | |
L1 | 4.2 (0.05) | 2.7 (0.07) | 1.4 (0.05) | 4.4 (0.09) | 3.1 (0.03) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blatchford, M.; M. Mannaerts, C.; Zeng, Y.; Nouri, H.; Karimi, P. Influence of Spatial Resolution on Remote Sensing-Based Irrigation Performance Assessment Using WaPOR Data. Remote Sens. 2020, 12, 2949. https://doi.org/10.3390/rs12182949
Blatchford M, M. Mannaerts C, Zeng Y, Nouri H, Karimi P. Influence of Spatial Resolution on Remote Sensing-Based Irrigation Performance Assessment Using WaPOR Data. Remote Sensing. 2020; 12(18):2949. https://doi.org/10.3390/rs12182949
Chicago/Turabian StyleBlatchford, Megan, Chris M. Mannaerts, Yijian Zeng, Hamideh Nouri, and Poolad Karimi. 2020. "Influence of Spatial Resolution on Remote Sensing-Based Irrigation Performance Assessment Using WaPOR Data" Remote Sensing 12, no. 18: 2949. https://doi.org/10.3390/rs12182949
APA StyleBlatchford, M., M. Mannaerts, C., Zeng, Y., Nouri, H., & Karimi, P. (2020). Influence of Spatial Resolution on Remote Sensing-Based Irrigation Performance Assessment Using WaPOR Data. Remote Sensing, 12(18), 2949. https://doi.org/10.3390/rs12182949