From Global Goals to Local Gains—A Framework for Crop Water Productivity
"> Figure 1
<p>Conceptual approach to setting crop water productivity (CWP) targets under the global water productivity score (GWPS), local water productivity score (LWPS) and land and water productivity score (YWPS).</p> "> Figure 2
<p>A CWP framework to guide the selection and estimation of CWP sub-indicators.</p> "> Figure 3
<p>Governorates, climates and agro-ecological zones of the West Bank, Palestine (shapefiles provided by the Palestinian Ministry of Agriculture 2013).</p> "> Figure 4
<p>(<b>a</b>) Density of potato fresh tuber CWP (kg m<sup>−3</sup>), (<b>b</b>) density of potato fresh tuber CWPc (kg m<sup>−3</sup>), (<b>c</b>) CWP (kg m<sup>−3</sup>) plotted against yield and (<b>d</b>) CWPc (kg m<sup>−3</sup>) plotted against yield. Each plot shows the winter (2014 winter rotation) and the fall (2015 fall rotation) rotations in the West Bank, Palestine, as estimated in SEBAL, and global values of CWP (global) taken from literature (<a href="#app1-ijgi-07-00414" class="html-app">Appendix A</a>).</p> "> Figure 5
<p>The spatial variation of fall (2015 fall rotation) rotation CWP in the West Bank, Palestine.</p> "> Figure 6
<p>CWPc plotted against yield identifying score clusters for the GWPS setting for (<b>a</b>) local Palestinian 99th percentile set as the target and the (<b>b</b>) global 99th percentile derived from literature set as the target.</p> "> Figure 7
<p>CWPc plotted against yield identifying score clusters for the local water productivity score (LWPS) for (<b>a</b>) local Palestinian targets and (<b>b</b>) based on global literature values as targets and the associated upper (<b>c</b>) and lower (<b>d</b>) boundary functions of potato CWP in West Bank, Palestine and based on global literature values.</p> "> Figure 8
<p>(<b>a</b>) Land and water use productivity score (YWPS) in West Bank, Palestine plotted as a function of yield and CWPc and (<b>b</b>) YWPS plotted as a function of YS and ETS (right) for potato in the West Bank.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Defining Crop Water Productivity Sub-Indicators
2.1.1. Global Water Productivity Score (GWPS)
2.1.2. Local Water Productivity Score (LWPS)
2.1.3. Land and Water Productivity Score (YWPS)
2.2. Defining a Crop Water Productivity Framework
2.3. The Case Study
2.3.1. The Case Study, West Bank, Palestine
2.3.2. Crop Water Productivity Model
2.3.3. Data Requirement
3. Results
3.1. Crop Water Productivity (CWP) And Normalised CWP
CWP Validation
3.2. Crop Water Productivity Scores
3.2.1. Global Water Productivity Score (GWPS)
3.2.2. Local Water Productivity Score (LWPS)
3.2.3. Land and Water Productivity Score (YWPS)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Location | Min CWP (kg/m3) | Max CWP (kg/m3) | Median CWP (kg/m3) | Median CWPc (kg/m3) | n | Experiment Year | Reference |
---|---|---|---|---|---|---|---|
Southern Morava, near Nis, Serbia | 8.12 | 9.82 | 8.70 | 7.39 | 6 | 2008–2009 | [90] |
Yenişehir, Bursa, Turkey | 2.95 | 5.57 | 4.98 | 4.63 | 20 | 2004–2005 | [91] |
Belgium | 7.85 | 24.36 | 15.73 | 16.85 | 28 | 1988–1995 | [92] |
Gansu, China | 1.07 | 2.04 | 1.40 | 1.07 | 9 | 2009–2010 | [93] |
Tekirdag, Turkey | 4.69 | 9.47 | 5.82 | 4.91 | 12 | 2003–2005 | [94] |
Brooks, Alberta, Canada | 12.28 | 19.69 | 14.34 | 14.00 | 10 | 2006–2008 | [95] |
Hebei, China | 11.44 | 15.51 | 13.45 | 14.00 | 11 | 2002 | [96] |
Centraal Bekaa Valley, Lebanon | 7.48 | 10.98 | 9.92 | 9.07 | 6 | 2007–2008 | [97] |
North of Mekelle, Ethiopia | 1.60 | 2.86 | 2.20 | 3.46 | 8 | 2012 | [98] |
Erzurum, Turkey | 3.87 | 6.29 | 5.65 | 5.39 | 12 | 2003–2004 | [99] |
Hatay, Turkey | 5.78 | 14.01 | 9.82 | 10.38 | 16 | 2000–2002 | [100] |
Konya, Turkey | 6.25 | 9.12 | 7.79 | 8.14 | 12 | 2008–2009 | [101] |
Quebec, Canada | 12.10 | 12.10 | 12.10 | 8.49 | 1 | 2007 | [102] |
Gansu, China | 10.85 | 17.53 | 13.37 | 9.94 | 12 | 2014–2015 | [103] |
Albacete, Spain | 6.53 | 11.38 | 8.20 | 9.77 | 8 | 2011–2012 | [85] |
Florida, USA | 6.32 | 7.00 | 6.66 | 8.50 | 2 | 2011–2012 | [104] |
Florida, USA | 16.88 | 19.39 | 18.13 | 22.60 | 2 | 2012–2013 | [105] |
Tandil, Argentina | 9.57 | 9.57 | 9.57 | 7.52 | 1 | 2012–2013 | [106] |
Gansu, China | 9.57 | 16.62 | 11.90 | 8.84 | 18 | 2012–2013 | [107] |
Gansu, China | 7.78 | 14.31 | 12.18 | 9.48 | 12 | 2010–2011 | [108] |
Shiyang River Basin, China | 5.86 | 18.37 | 13.60 | 13.18 | 11 | 2006–2007 | [109] |
Gansu, China | 1.37 | 4.75 | 2.39 | 2.05 | 14 | 2002–2003 | [110] |
Idaho, USA | 7.38 | 8.20 | 8.20 | 8.19 | 8 | 2006–2007 | [111] |
Rijadh, Saudi Arabia | 28.08 | 28.34 | 28.21 | 55.56 | 2 | 2011–2013 | [112] |
Orissa, India | 0.85 | 3.45 | 2.08 | 4.38 | 16 | 2001–2002 | [113] |
Bekaa Valley, Lebanon | 7.50 | 9.00 | 8.00 | 7.94 | 4 | 2001 | [114] |
Nidge, Turkey | 0.00 | 7.37 | 4.51 | 4.88 | 40 | 2000–2001 | [115] |
Iraq | 5.13 | 10.26 | 7.14 | 12.46 | 6 | 2011 | [116] |
Sweden | 16.29 | 22.41 | 18.79 | 11.44 | 15 | 2008–2009 | [117] |
References
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2015/2030: The 2012 Revision; FAO: Rome, Italy, 2013; Volume 20. [Google Scholar]
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the anthropocene: The great acceleration. Anthr. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- Molden, D.J. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 9781844073962. [Google Scholar]
- Conijn, J.G.; Bindraban, P.S.; Schröder, J.J.; Jongschaap, R.E.E. Can our global food system meet food demand within planetary boundaries? Agric. Ecosyst. Environ. 2018, 251, 244–256. [Google Scholar] [CrossRef]
- Rockstrom, J.; Lannerstad, M.; Falkenmark, M. Assessing the water challenge of a new green revolution in developing countries. Proc. Natl. Acad. Sci. USA 2007, 104, 6253–6260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkenmark, M.; Rockström, J.; Karlberg, L. Present and future water requirements for feeding humanity. Food Secur. 2009, 1, 59–69. [Google Scholar] [CrossRef]
- Hoogeveen, J.; Faurès, J.-M.; Peiser, L.; Burke, J.; van de Giesen, N. GlobWat—A global water balance model to assess water use in irrigated agriculture. Hydrol. Earth Syst. Sci. 2015, 19, 3829–3844. [Google Scholar] [CrossRef]
- Kijne, J.; Barron, J.; Hoff, H.; Rockström, J. Opportunities to Increase Water Productivity in Agriculture with Special Reference to Africa and South Asia; Stockholm Environment Institute, Stockholm University: Stockholm, Sweden, 2009; Volume 16, p. 48. [Google Scholar]
- UN-DESA. Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/sdgs (accessed on 1 May 2017).
- Briggs, L.J.; Shantz, H.L. Relative water requirements of plants. J. Agric. Res. 1914, 5, 116–132. [Google Scholar]
- Viets, F.G.J. Fertiliser and the efficient use of water. Adv. Agron. 1962, 14, 223–264. [Google Scholar]
- Hanks, B.J.; Tanner, C.B. Water consumption by plants as influenced by soil fertility. Agressologie 1952, 98–100. [Google Scholar]
- Hanks, R.J.; Gardner, H.R.; Florian, R.L. Plant growth-evapotranspiration relations for several crops in the central great plains. Agron. J. 1969, 61, 30–34. [Google Scholar] [CrossRef]
- Bierhuizen, J.; Slayer, R. Effect of atmospheric concentration of water vapour and CO2 in determining transpiration-photosynthesis relationships of cotton leaves. Agric. Meteorol. 1965, 2, 259–270. [Google Scholar] [CrossRef]
- Tanner, C.B.; Sinclair, T.R. Efficient water use in crop production: Research or re-search? Limit. Eff. Water Use Crop. Prod. 1983, 1–27. [Google Scholar] [CrossRef]
- Kijne, J.W.; Barker, R.; Molden, D. Improving Water Productivity in Agriculture: Editors’ Overview. Water Product. Agric. Limits Oppor. Improv. 2003, xi–xix. [Google Scholar] [CrossRef]
- De Wit, C. Transpiration and crop yields. Versl. Landbouwkd. Onderz. 1958, 64, 18–20. [Google Scholar]
- Sadras, V.O.; Grassini, P.; Steduto, P. Status of Water Use Efficiency of Main Crops; SOLAW Background Thematic Rep. TR07; FAO: Rome, Italy, 2007. [Google Scholar]
- French, R.; Schultz, J. Water use efficiency of wheat in a Mediterranean-type environment. I. The relation between yield, water use and climate. Aust. J. Agric. Res. 1984, 35, 743–764. [Google Scholar] [CrossRef]
- Ali, M.H.; Talukder, M.S.U. Increasing water productivity in crop production-A synthesis. Agric. Water Manag. 2008, 95, 1201–1213. [Google Scholar] [CrossRef]
- Arora, V.K.; Singh, C.B.; Sidhu, A.S.; Thind, S.S. Irrigation, tillage and mulching effects on soybean yield and water productivity in relation to soil texture. Agric. Water Manag. 2011, 98, 563–568. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Sauer, T.J.; Prueger, J.H. Managing Soils to Achieve Greater Water Use Efficiency: A Review Managing Soils to Achieve Greater Water Use Efficiency: A Review. Agron. J. 2001, 93, 271–280. [Google Scholar] [CrossRef]
- Pinter, P.J.J.; Hatfield, J.L.L.; Schepers, J.S.S.; Barnes, E.M.M.; Moran, M.S.S.; Daughtry, C.S.T.S.T.; Upchurch, D.R.R. Remote sensing for crop management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [Google Scholar] [CrossRef]
- Van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance—A review. Field Crop. Res. 2013, 143, 4–17. [Google Scholar] [CrossRef]
- Rockström, J.; Barron, J. Water productivity in rainfed systems: Overview of challenges and analysis of opportunities in water scarcity prone savannahs. Irrig. Sci. 2007, 25, 299–311. [Google Scholar] [CrossRef]
- Allen, R.G.; Clemmens, A.J.; Burt, C.M.; Solomon, K.; O’Halloran, T. Prediction Accuracy for Projectwide Evapotranspiration Using Crop Coef cients and Reference Evapotranspiration. J. Irrig. Drain. Eng. 2005, 131, 24–36. [Google Scholar] [CrossRef]
- Oweis, T.; Hachum, A. 11 Improving Water Productivity in the Dry Areas of West Asia and North Africa. Water Product. Agric. Limits 2003, 1, 179. [Google Scholar]
- Bossio, D.; Geheb, K. Conserving Land, Protecting Water; CABI International: Oxfordshire, UK, 2008; ISBN 9781845933876. [Google Scholar]
- Chapagain, A.K.; Hoekstra, A.Y. Water footprint of nations. Volume 1: Main report. Value Water Res. Rep. Ser. 2004, 1, 1–80. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Williams, J.R.; Zehnder, A.J.B.; Yang, H. GEPIC—Modelling wheat yield and crop water productivity with high resolution on a global scale. Agric. Syst. 2007, 94, 478–493. [Google Scholar] [CrossRef]
- Siebert, S.; Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 2010, 384, 198–217. [Google Scholar] [CrossRef]
- Brauman, K.A.; Siebert, S.; Foley, J.A. Improvements in crop water productivity increase water sustainability and food security—A global analysis. Environ. Res. Lett. 2013, 8, 024030. [Google Scholar] [CrossRef]
- Zwart, S.J.; Bastiaanssen, W.G.M. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric. Water Manag. 2004, 69, 115–133. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Water footprint benchmarks for crop production: A first global assessment. Ecol. Indic. 2014, 46, 214–223. [Google Scholar] [CrossRef]
- Zwart, S.J.; Bastiaanssen, W.G.M.; de Fraiture, C.; Molden, D.J. A global benchmark map of water productivity for rainfed and irrigated wheat. Agric. Water Manag. 2010, 97, 1617–1627. [Google Scholar] [CrossRef]
- Karimi, P.; Molden, D.; Notenbaert, A.; Peden, D. Nile basin farming systems and productivity. In The Nile River Basin: Water, Agriculture, Governance and Livelihoods; Awulachew, S.B., Smakhtin, V., Molden, D., Peden, D., Eds.; Routledge-Earthscan: Abingdon, UK, 2012; pp. 133–153. [Google Scholar]
- Rebelo, L.; Johnston, R.; Karimi, P.; Mccornick, P.G. Determining the Dynamics of Agricultural Water Use: Cases from Asia and Africa. J. Contemp. Water Res. Educ. 2014, 153, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Molden, D.; Mainuddin, M.; Sharma, B.; Ahmad, M.-D.; Karimi, P. Producing more food with less water in a changing world: Assessment of water productivity in 10 major river basins. Water Int. 2011, 36, 42–62. [Google Scholar] [CrossRef]
- Cai, X.; Sharma, B.R.; Matin, M.A.; Sharma, D.; Gunasinghe, S. An Assessment of Crop Water Productivity in the Indus and Ganges River Basins: Current Status and Scope for Improvement; International Water Management Institute: Sri Lanka, South Asia, 2010; Volume 140, ISBN 9789290907350. [Google Scholar]
- Bastiaanssen, W.G.M.; Steduto, P. The water productivity score (WPS) at global and regional level: Methodology and first results from remote sensing measurements of wheat, rice and maize. Sci. Total Environ. 2017, 575, 595–611. [Google Scholar] [CrossRef] [PubMed]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Sadras, V.O.; Cassman, K.G.G.; Grassini, P.; Hall, A.J.; Bastiaanssen, W.G.M.; Laborte, A.G.; Milne, A.E.; Sileshi, G.; Steduto, P. Yield Gap Analysis of Field Crops, Methods and Case Studies; FAO: Rome, Italy, 2015; ISBN 9789251088135. [Google Scholar]
- Steduto, P.; Albrizio, R. Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea: II. Water use efficiency and comparison with radiation use efficiency. Agric. For. Meteorol. 2005, 130, 269–281. [Google Scholar] [CrossRef]
- International Water Management Institute (IWMI). World Water and Climate Atlas; International Water Management Institute: Colombo, Sri Lanka, 2009. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements; FAO Irrigation and drainage paper; FAO: Rome, Italy, 1998; Volume 300. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water; FAO: Rome, Italy, 2012; ISBN 9789251072745. [Google Scholar]
- The Applied Research Institute Jerusalem (ARIJ). Palestinian Agricultural Production and Marketing between Reality and Challenges; ARIJ: Bethlehem, Palestinian, 2015; ISBN 2277722626. [Google Scholar]
- The Palestinian Institute for Arid Land and Environmental Studies (PIALES). Antigua and Barbuda Country Report to the FAO International Technical Conference; PIALES: Hebron, Palestinian, 1996. [Google Scholar]
- Attalah, N. Water for Life Water, Sanitation and Hygiene Monitoring Program (WaSH MP) 2007/2008; Palestinian Hydrology Group: Ramallah, Palestinian, 2008. [Google Scholar]
- The World Bank. West Bank and Gaza-Assessment of Restrictions on Palestinian Water Sector Development; The World Bank: Washington, DC, USA, 2009. [Google Scholar]
- United Nations Development Programme (UNDP). Climate Change Adaptation Strategy and Programme of Action for the Palestinian Authority; UNDP: New York, NY, USA, 2010. [Google Scholar]
- Dudeen, B. The Soils of Palestine (The West Bank and Gaza Strip) Current Status and Future Perspectives. Soil Resour. South. East. Mediterr. Ctries. 2001, 225, 203–225. [Google Scholar]
- Yigini, Y.; Panagos, P.; Montanarella, L. Soil Resources of Mediterranean and Caucasus Countries Extension of the European Soil Database; Office for Official Publications of the Euroean Communities: Luxembourg, 2013; ISBN 9789279303463. [Google Scholar]
- Ministry of Agriculture Palestine (MoA). Shapefiles Relating to the West Bank Palestine; MoA: Maastricht, The Netherlands, 2015. [Google Scholar]
- ARIJ. A Review of the Palestinian Agricultural Sector; ARIJ: Bethlehem, Palestinian, 2007; ISBN 9789950304031. [Google Scholar]
- Islam, A.S.; Bala, S.K. Assessment of Potato Phenological Characteristics Using MODIS-Derived NDVI and LAI Information. Gisci. Remote Sens. 2008, 45, 454–470. [Google Scholar] [CrossRef]
- González-Sanpedro, M.C.; Le Toan, T.; Moreno, J.; Kergoat, L.; Rubio, E. Seasonal variations of leaf area index of agricultural fields retrieved from Landsat data. Remote Sens. Environ. 2008, 112, 810–824. [Google Scholar] [CrossRef]
- Lotz, L.A.; Groeneveld, R.M.; Theunissen, J.; Van Den Broek, R.C. Yield losses of white cabbage caused by competition with clovers grown as cover crop. Neth. J. Agric. Sci. 1997, 45, 393–405. [Google Scholar]
- Gupta, R.K.; Prasad, T.S.; Vijayan, D. Relationship between LAI and NDVI for IRS LISS and LANDSAT TM bands. Adv. Space Res. 2000, 26, 1047–1050. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Meneti, M.; Feddes, R.A.; Holtslag, A.A. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; Van Der Wal, T. A remote sensing surface energy balance algorithm for land (SEBAL): 2. Validation. J. Hydrol. 1998, 212–213, 213–229. [Google Scholar] [CrossRef]
- Rees, D.; Farrell, G.; Orchard, J. Crop Post-Harvest: Science and Technology: Perishables; Wiley-Blackwell: Chichester, UK, 2012; ISBN 9780632057252. [Google Scholar]
- Evans, L. Crop Evolution, Adaptation and Yield; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Li, Z.L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A review of current methodologies for regional Evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [PubMed]
- Bastiaanssen, W.G.; Noordman, E.J.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R.G. SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions. J. Irrig. Drain. Eng. 2005, 131, 2. [Google Scholar] [CrossRef]
- Bala, A.; Rawat, K.S.; Misra, A.K.; Srivastava, A. Assessment and Validation of Evapotranspiration using SEBALalgorithm and Lysimeter data of IARI Agricultural Farm, India. Geocarto Int. 2015, 6049, 1–29. [Google Scholar] [CrossRef]
- De Teixeira, A.H.C.; Bastiaanssen, W.G.M.; Ahmad, M.D.; Bos, M.G. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle Sao Francisco River basin, Brazil. Part B: Application to the regional scale. Agric. For. Meteorol. 2009, 149, 477–490. [Google Scholar] [CrossRef]
- Li, H.; Zheng, L.; Lei, Y.; Li, C.; Liu, Z.; Zhang, S. Estimation of water consumption and crop water productivity of winter wheat in North China Plain using remote sensing technology. Agric. Water Manag. 2008, 95, 1271–1278. [Google Scholar] [CrossRef]
- Jimenez-Bello, M.A.; Castel, J.R.; Testi, L.; Intrigliolo, D.S. Assessment of a Remote Sensing Energy Balance Methodology (SEBAL) Using Different Interpolation Methods to Determine Evapotranspiration in a Citrus Orchard. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar radition and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Asrar, G.; Myneni, R.B.; Choudhury, B.J. Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation: A modeling study. Remote Sens. Environ. 1992, 41, 85–103. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Asrar, G.; Kanemasu, E.T. Intercepted photosynthetically active radiation estimated by spectral reflectance. Remote Sens. Environ. 1984, 14, 65–75. [Google Scholar] [CrossRef]
- Wiegand, C.L.; Richardson, A.J.; Escobar, D.E.; Gerbermann, A.H. Vegetation indices in crop assessment. Remote Sens. Environ. 1991, 119, 105–119. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Ali, S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Science 2003, 94, 321–340. [Google Scholar] [CrossRef]
- Field, C.B.; Randerson, J.T.; Malmstrom, C.M. Global net primary production: Combing ecology and remote sensing. Remote Sens. Environ. 1995, 51, 74–88. [Google Scholar] [CrossRef]
- Allen, R.; Tasumi, M.; Trezza, R. SEBAL (Surface Energy Balance Algorithms for Land). Advanced Training and Users Manual. Idaho Implement 2002, 1–98. [Google Scholar]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. Discuss. 2002, 6, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Anderson, M.C.; Kustas, W.P.; Norman, J.M.; Hain, C.R.; Mecikalski, J.R.; Schultz, L.; González-Dugo, M.P.; Cammalleri, C.; D’Urso, G.; Pimstein, A.; et al. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. SRTM 90m Digital Elevation Database v4.1. Available online: http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1 (accessed on 6 November 2014).
- Rodell, M.; Beaudoing, H. NASA/GSFC/HSL (12.01.2013) GLDAS Noah Land Surface Model L4 3 hourly 0.25 × 0.25 degree Version 2.0. 2013. (accessed on 6 November 2014).
- Ferreira, T.C.; Carr, M.K. V Responses of potatoes (Solanum tuberosum L.) to irrigation and nitrogen in a hot, dry climate I. Water use. Field Crop. Res. 2002, 78, 51–64. [Google Scholar] [CrossRef]
- De Carvalho, D.F.; da Silva, D.G.; da Rocha, H.S.; de Almeida, W.S.; da Sousa, E.S. Evapotranspiration and crop coefficient for potato in organic farming. Eng. Agric. 2013, 201–211. [Google Scholar] [CrossRef]
- Montoya, F.; Camargo, D.C.; Ortega, J.F.; Domínguez, A. Evaluation of Aquacrop model for a potato crop under different irrigation conditions. Agric. Water Manag. 2016, 164, 267–280. [Google Scholar] [CrossRef]
- Zwart, S.J. Benchmarking Water Productivity in Agriculture and the Scope for Improvement: Remote Sensing Modelling from Field to Global Scale; Delft University of Technology: Delft, The Netherlands, 2010; ISBN 9789065622372. [Google Scholar]
- Sari, D.K.; Ismullah, I.H.; Sulasdi, W.N.; Harto, A.B. Estimation of Water Consumption of Lowland Rice in Tropical Area based on Heterogeneous Cropping Calendar Using Remote Sensing Technology. Procedia Environ. Sci. 2013, 17, 298–307. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Tanner, C.B.; Bennett, J.M. Water-Use Efficiency in Crop Production. Bioscience 1984, 34, 36–40. [Google Scholar] [CrossRef]
- Wichelns, D. Do estimates of water productivity enhance understanding of farm-level water management? Water 2014, 6, 778–795. [Google Scholar] [CrossRef]
- Aksic, M.; Gudzic, S.; Deletic, N.; Gudzic, N.; Stojkovic, S.; Knezevic, J. Tuber yield and evapotranspiration of potato depending on soil matric potential. Bulg. J. Agric. Sci. 2014, 20, 122–126. [Google Scholar]
- Ayas, S.; Korukçu, A. Water-Yield Relationships in Deficit Irrigated Potato. Ziraat Fak. Derg. 2010, 24, 23–36. [Google Scholar]
- Janssens, P.; Elsen, F.; Odeurs, W.; Coussement, T.; Bries, J.; Vandendriessche, H. Irrigation need and expected future water availability for potato growing in Belgium Content. Presented at the 19th Triennial Conference of the European Association for Potato Research, Brussels, Belgium, 6–11 July 2014. [Google Scholar]
- Zhao, H.; Wang, R.Y.; Ma, B.L.; Xiong, Y.C.; Qiang, S.C.; Wang, C.L.; Liu, C.A.; Li, F.M. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crop. Res. 2014, 161, 137–148. [Google Scholar] [CrossRef]
- Erdem, T.; Erdem, Y.; Orta, H.; Okursoy, H. Water-Yield Relationships of Potato Under Different Irrigation Methods and Regimens Relação Água-Produção Na Cultura Da Batata Sob Diferentes Métodos E Regimes De Irrigação. Sci. Agric. 2006, 63, 226–231. [Google Scholar] [CrossRef]
- Harms, T.E.; Konschuh, M.N. Water savings in irrigated potato production by varying hill-furrow or bed-furrow configuration. Agric. Water Manag. 2010, 97, 1399–1404. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, F.X.; Liu, H.J.; Yuan, B.Z. Potato evapotranspiration and yield under different drip irrigation regimes. Irrig. Sci. 2004, 23, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Karam, F.; Amacha, N.; Fahed, S.; EL Asmar, T.; Domínguez, A. Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications. Agric. Water Manag. 2014, 142, 144–151. [Google Scholar] [CrossRef]
- Kifle, M.; Gebretsadikan, T.G. Yield and water use efficiency of furrow irrigated potato under regulated deficit irrigation, Atsibi-Wemberta, North Ethiopia. Agric. Water Manag. 2015, 170, 133–139. [Google Scholar] [CrossRef]
- Kiziloglu, F.M.; Sahin, U.; Tune, T.; Diler, S. The effect of deficit irrigation on potato evapotranspiration and tuber yield under cool season and semiarid climatic conditions. J. Agron. 2006, 5, 284–288. [Google Scholar] [CrossRef]
- Onder, S.; Caliskan, M.E.; Onder, D.; Caliskan, S. Different irrigation methods and water stress effects on potato yield and yield components. Agric. Water Manag. 2005, 73, 73–86. [Google Scholar] [CrossRef]
- Yavuz, D.; Yavuz, N.; Suheri, S. Design and management of a drip irrigation system for an optimum potato yield. J. Agric. Sci. Technol. 2016, 18, 817–830. [Google Scholar]
- Parent, A.C.; Anctil, F. Quantifying evapotranspiration of a rainfed potato crop in South-eastern Canada using eddy covariance techniques. Agric. Water Manag. 2012, 113, 45–56. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, F.X.; Shock, C.C.; Yang, K.J.; Kang, S.Z.; Qin, J.T.; Li, S.E. Influence of different plastic film mulches and wetted soil percentages on potato grown under drip irrigation. Agric. Water Manag. 2017, 180, 160–171. [Google Scholar] [CrossRef]
- Reyes-Cabrera, J.; Zotarelli, L.; Dukes, M.D.; Rowland, D.L.; Sargent, S.A. Soil moisture distribution under drip irrigation and seepage for potato production. Agric. Water Manag. 2016, 169, 5–6. [Google Scholar] [CrossRef]
- Liao, X.; Su, Z.; Liu, G.; Zotarelli, L.; Cui, Y.; Snodgrass, C. Impact of soil moisture and temperature on potato production using seepage and center pivot irrigation. Agric. Water Manag. 2016, 165, 230–236. [Google Scholar] [CrossRef]
- Rodriguez, C.I.; de Galarreta, V.R.; Kruse, E.E. Analysis of water footprint of potato production in the pampean region of Argentina. J. Clean. Prod. 2015, 90, 91–96. [Google Scholar] [CrossRef]
- Yang, K.; Wang, F.; Shock, C.C.; Kang, S.; Huo, Z.; Song, N.; Ma, D. Potato performance as influenced by the proportion of wetted soil volume and nitrogen under drip irrigation with plastic mulch. Agric. Water Manag. 2017, 179, 260–270. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, J.; Dai, H.; Wang, D.; Li, D. Effect of ridge–furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area. Agric. Water Manag. 2014, 131, 87–94. [Google Scholar] [CrossRef]
- Hou, X.Y.; Wang, F.X.; Han, J.J.; Kang, S.Z.; Feng, S.Y. Duration of plastic mulch for potato growth under drip irrigation in an arid region of Northwest China. Agric. For. Meteorol. 2010, 150, 115–121. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, E.; Li, F.; Li, F. Runoff Efficiency and the Technique of Micro-water Harvesting with Ridges and Furrows, for Potato Production in Semi-arid Areas. Water Resour. Manag. 2008, 22, 1431–1443. [Google Scholar] [CrossRef]
- King, B.A.; Tarkalson, D.D.; Bjorneberg, D.L.; Taberna, J.P. Planting System Effect on Yield Response of Russet Norkotah to Irrigation and Nitrogen under High Intensity Sprinkler Irrigation. Am. J. Potato Res. 2011, 88, 121–134. [Google Scholar] [CrossRef]
- Alenazi, M.; Wahb-Allah, M.A.; Abdel-Razzak, H.S.; Ibrahim, A.A.; Alsadon, A. Water Regimes and Humic Acid Application Influences Potato Growth, Yield, Tuber Quality and Water Use Efficiency. Am. J. Potato Res. 2016, 93, 463–473. [Google Scholar] [CrossRef]
- Kar, G.; Kumar, A. Effects of irrigation and straw mulch on water use and tuber yield of potato in eastern India. Agric. Water Manag. 2007, 94, 109–116. [Google Scholar] [CrossRef]
- Darwish, T.M.; Atallah, T.W.; Hajhasan, S.; Haidar, A. Nitrogen and water use efficiency of fertigated processing potato. Agric. Water Manag. 2006, 85, 95–104. [Google Scholar] [CrossRef]
- Ünlü, M.; Kanber, R.; Şenyigit, U.; Diker, K. Trickle and sprinkler irrigation of potato (Solanum tuberosum L.) in the Middle Anatolian Region in Turkey. Agric. Water Manag. 2006, 79, 43–71. [Google Scholar] [CrossRef]
- Ati, A.S.; Iyada, D.; Najim, S.M. Water use efficiency of potato (Solanum tuberosum L.) under different irrigation methods and potassium fertilizer rates. Ann. Agric. Sci. 2012, 57, 99–103. [Google Scholar] [CrossRef]
- Ekelof, J.; Guamán, V.; Jensen, E.S.; Persson, P. Inter-Row Subsoiling and Irrigation Increase Starch Potato Yield, Phosphorus Use Efficiency and Quality Parameters. Potato Res. 2013, 58, 15–27. [Google Scholar] [CrossRef]
Aspect. | Sub-Indicator | ||
---|---|---|---|
GWPS | LWPS | YWPS | |
Sub-indicator target | Global bright spots | Upper boundary function | Local bright spot |
Subsequent sub-indicator goal | Maximise CWP | Reduce water consumption | Maximise land and water productivity (optimise) |
Ideal application | Land limited region/s | Water limited region | Water and/or land limited region/s |
Benefits | Considers both yield and ETa improvements to meet the CWP target Biophysical limit is target | External benchmarks not required Does not require environmental boundary delineation | Considers both yield and ETa improvements to meet the CWP target Identifies yield and Eta separately to target improvements |
Constraints and assumptions | Assumes global attainable CWP (after normalisation) can be achieved locally. Environmental boundary delineation may be required | Focused purely on ETa improvements. Assumes global attainable CWP for a given yield (after normalisation) can be achieved locally. Environmental boundary delineation may be required (normalised by yield [41]) | Assumes local attainable CWP is being achieved - external benchmarks may be required Environmental boundary delineation may be required |
Climatic normalisation | Yes | No | No |
Practice | Percent of Land | ||
---|---|---|---|
Irrigation status | Irrigated Palestinian Land | 40.64% | |
Irrigated Arable Palestinian Land | 47.06% | ||
Non-identified | 12.30% | ||
Rainfed Palestinian Land | 2.39% | ||
Irrigated and Israeli settlement | 0.65% | ||
Planting season | Fall potato (2014/2015) | 43.73% | |
Winter potato (2013/2014) | 56.27% | ||
Peak NDVI | Fall potato (2014/2015) | DOY 300 | 5.54% |
DOY 332 | 29.97% | ||
DOY 364 | 8.43% | ||
Winter potato (2013/2014) | DOY 060 | 29.48% | |
DOY 092 | 26.58% |
Date of Available Landsat 8 Image | DOY of Available Landsat 8 Image | Approximate Days after Planting | Approximate Vegetative Phase |
---|---|---|---|
2014/2015 fall potato | |||
25 September 2014 | 268 | 0–25 | Establishment |
11 October 2014 | 284 | 10–40 | Establishment-Stolon Initiation * |
27 October 2014 | 300 | 25–60 | Stolon initiation to tuber initiation |
28 November 2014 | 332 | 55–90 | Tuber initiation to tuber filling |
30 December 2014 | 364 | 90–120 | Tuber filling to maturation or harvest |
31 January 2015 | 031 | 128 | Tuber maturation and harvest. |
2013/2014 winter potato | |||
27 December 2013 | 361 | 0–30 | Establishment-Stolon initiation |
13 February 2014 | 044 | 50–80 | Stolon initiation to tuber initiation |
01 March 2014 | 060 | 60–95 | Stolon initiation to tuber initiation |
02 April 2014 | 092 | 80–110 | Tuber initiation to tuber filling |
18 April 2014 | 108 | 95–130 | Tuber filling to maturation or harvest |
04 May 2014 | 124 | 110–145 | Tuber maturation or harvest |
20 May 2014 | 142 | 130–160 | Tuber maturation or harvest. |
Scale | Season | Mean | 5th Percentile | 99th Percentile | St.dev * | CV ** | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
CPW | CWPc | CPW | CWPc | CPW | CWPc | CPW | CWPc | CPW | CWPc | ||
West Bank | Winter | 12.69 | 13.07 | 7.32 | 7.43 | 22.09 | 23.22 | 3.40 | 3.58 | 0.28 | 0.26 |
Fall | 12.15 | 9.49 | 4.84 | 3.79 | 30.47 | 23.54 | 5.98 | 4.65 | 0.49 | 0.49 | |
Overall | 12.45 | 11.37 | 5.71 | 4.52 | 28.67 | 23.43 | 4.72 | 4.49 | 0.38 | 0.40 | |
Global | 8.86 | 8.80 | 1.65 | 1.81 | 22.51 | 24.67 | 5.41 | 6.10 | 0.61 | 0.69 | |
* St.dev is standard deviation; ** CV is coefficient of variation. |
Practice | Variation | GWPS | LWPS | YWPS | |
---|---|---|---|---|---|
Planting season | Fall potato (2014/2015) | 4.92 | 5.87 | 4.72 | |
Winter potato (2013/2014) | 5.23 | 5.29 | 6.40 | ||
Irrigation | Irrigated Palestinian Land | 4.61 | 4.78 | 4.74 | |
Irrigated Arable Palestinian Land | 5.22 | 5.51 | 6.33 | ||
Rainfed Palestinian Land | 5.64 | 7.22 | 6.14 | ||
Irrigated and Israeli settlement | 7.29 | 2.66 | 7.45 | ||
Peak NDVI | Fall potato (2014/2015) | DOY 300 | 3.37 | 2.58 | 2.60 |
DOY 332 | 4.85 | 6.46 | 4.74 | ||
DOY 364 | 6.25 | 5.95 | 6.06 | ||
Winter potato (2013/2014) | DOY 060 | 5.12 | 6.04 | 5.80 | |
DOY 092 | 5.34 | 4.43 | 7.07 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blatchford, M.L.; Karimi, P.; Bastiaanssen, W.G.M.; Nouri, H. From Global Goals to Local Gains—A Framework for Crop Water Productivity. ISPRS Int. J. Geo-Inf. 2018, 7, 414. https://doi.org/10.3390/ijgi7110414
Blatchford ML, Karimi P, Bastiaanssen WGM, Nouri H. From Global Goals to Local Gains—A Framework for Crop Water Productivity. ISPRS International Journal of Geo-Information. 2018; 7(11):414. https://doi.org/10.3390/ijgi7110414
Chicago/Turabian StyleBlatchford, Megan Leigh, Poolad Karimi, W.G.M. Bastiaanssen, and Hamideh Nouri. 2018. "From Global Goals to Local Gains—A Framework for Crop Water Productivity" ISPRS International Journal of Geo-Information 7, no. 11: 414. https://doi.org/10.3390/ijgi7110414
APA StyleBlatchford, M. L., Karimi, P., Bastiaanssen, W. G. M., & Nouri, H. (2018). From Global Goals to Local Gains—A Framework for Crop Water Productivity. ISPRS International Journal of Geo-Information, 7(11), 414. https://doi.org/10.3390/ijgi7110414