Assessment of Satellite-Based Precipitation Measurement Products over the Hot Desert Climate of Egypt
"> Figure 1
<p>Egypt topography and the location of rainfall gauges. The average annual rainfall at 29 stations for the period 2014–2018 is used to show the rainfall distribution.</p> "> Figure 2
<p>Spatial distribution of average annual rainfall (in mm/year) over Egypt estimated by (<b>a</b>) CHIRPS, (<b>b</b>) IMERG, and (<b>c</b>) GSMaP for the period March 2014–May 2018.</p> "> Figure 3
<p>Bar graphs representing the count of rainfall events of the light, low–moderate, high–moderate, and heavy rainfall intensity classes at each rainfall station.</p> "> Figure 4
<p>Box plots of Root Mean Square Error (RMSE) of the three satellite-based datasets in the estimation of rainfall amounts for (<b>a</b>) all events, and (<b>b</b>–<b>f</b>) different intensity ranges as shown in the corresponding plot.</p> "> Figure 5
<p>Maps showing the best performing datasets according to RMSE at each station along with the estimated RMSE for the best performing satellite rainfall product for (<b>a</b>) all rainfall events, (<b>b</b>) no/tiny rain, (<b>c</b>) light rain, (<b>d</b>) low–moderate rain, (<b>e</b>) heavy–moderate rain, and (<b>f</b>) heavy rain.</p> "> Figure 6
<p>Box plots of Kling–Gupta efficiency (KGE) of the three satellite-based datasets in the estimation of rainfall amount for (<b>a</b>) all events, and (<b>b</b>–<b>f</b>) different intensity ranges as shown in the corresponding plot.</p> "> Figure 7
<p>Maps showing the best performing datasets according to KGE at each station along with the estimated KGE for best performing satellite rainfall product for (<b>a</b>) all rainfall events, (<b>b</b>) no/tiny rain, (<b>c</b>) light rain, (<b>d</b>) low–moderate rain, (<b>e</b>) heavy–moderate rain, and (<b>f</b>) heavy rain.</p> "> Figure 8
<p>Box plots of Skill Score (SS) of the three satellite-based datasets in the estimation of rainfall amount for (<b>a</b>) all events, and (<b>b</b>–<b>f</b>) different intensity ranges as shown in the corresponding plot.</p> "> Figure 9
<p>Maps showing the best performing datasets according to PDF SS at each station along with the estimated SS for best performing satellite rainfall product for (<b>a</b>) all rainfall events, (<b>b</b>) no/tiny rain, (<b>c</b>) light rain, (<b>d</b>) low–moderate rain, (<b>e</b>) heavy–moderate rain, and (<b>f</b>) heavy rain.</p> "> Figure 10
<p>The performance chart of CHIRPS, IMERG, and GSMaP in detecting (<b>a</b>) all-events class, and (<b>b</b>) CHIRPS, (<b>c</b>) IMERG, and (<b>d</b>) GSMaP in detecting rainfall events having different intensity ranges.</p> "> Figure 11
<p>Spatial distribution of rainfall during the 5 November 2015 flash flood in the north of Egypt as captured by (<b>a</b>) CHIRPS, (<b>b</b>) IMERG, and (<b>c</b>) GSMaP along with observations at 7 nearby stations.</p> ">
Abstract
:1. Introduction
2. Case Study
3. Data
3.1. Ground Observations
3.2. Satellite-Based Gridded Daily Precipitation Datasets
4. Methodology
5. Results
5.1. Validation Based on Rainfall Amount
5.2. Validation Based on Occurrences of Rainfall
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shen, Y.; Chen, Y. Global perspective on hydrology, water balance, and water resources management in arid basins. Hydrol. Process. 2010, 24, 129–135. [Google Scholar] [CrossRef]
- Mashaly, J.; Ghoneim, E. Flash flood hazard using optical, radar, and stereo-pair derived dem: Eastern desert, Egypt. Remote Sens. 2018, 10, 1204. [Google Scholar] [CrossRef]
- Demnati, F.; Allache, F.; Ernoul, L.; Samraoui, B. Socio-economic stakes and perceptions of wetland management in an arid region: A case study from chott merouane, algeria. AMBIO 2012, 41, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Fattah, M.; Saber, M.; Kantoush, S.A.; Khalil, M.F.; Sumi, T.; Sefelnasr, A.M. A hydrological and geomorphometric approach to understanding the generation of wadi flash floods. Water 2017, 9, 553. [Google Scholar] [CrossRef]
- Costa, J.E. Hydraulics and basin morphometry of the largest flash floods in the conterminous United States. J. Hydrol. 1987, 93, 313–338. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Multi time-scale evaluation of high-resolution satellite-based precipitation products over northeast of austria. Atmos. Res. 2018, 206, 46–63. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Ismail, T.; Ahmed, K. Flood susceptibility assessment in kelantan river basin using copula. Int. J. Eng. Technol. 2018, 7, 584–590. [Google Scholar]
- Petersen, W.A.; Christian, H.J.; Rutledge, S.A. Trmm observations of the global relationship between ice water content and lightning. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S. Spatial distribution of unidirectional trends in climate and weather extremes in nile river basin. Theor. Appl. Climatol. 2018, 1–19. [Google Scholar] [CrossRef]
- Li, H.; Haugen, J.E.; Xu, C.-Y. Precipitation pattern in the western himalayas revealed by four datasets. Hydrol. Earth Syst. Sci. 2018, 22, 5097–5110. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S.; Chung, E.-S.; Ahmed, K.; Song, Y.H. Development of climate-based index for hydrologic hazard susceptibility. Sustainability 2018, 10, 2182. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shamsuddin, S.; Wang, X.-J. Uncertainty in estimated trends using gridded rainfall data: A case study of bangladesh. Water 2019, 11, 349. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S.; Abd Rahim, N. Unidirectional trends in annual and seasonal climate and extremes in egypt. Theor. Appl. Climatol. 2018, 1–17. [Google Scholar] [CrossRef]
- Retalis, A.; Katsanos, D.; Michaelides, S. Precipitation climatology over the mediterranean basin—Validation over Cyprus. Atmos. Res. 2016, 169, 449–458. [Google Scholar] [CrossRef]
- Okamoto, K.i.; Ushio, T.; Iguchi, T.; Takahashi, N.; Iwanami, K. The global satellite mapping of precipitation (GSMaP) project. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 29 July 2005; Volume 5, pp. 3414–3416. [Google Scholar]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Caracciolo, D.; Francipane, A.; Viola, F.; Noto, L.V.; Deidda, R. Performances of gpm satellite precipitation over the two major mediterranean islands. Atmos. Res. 2018, 213, 309–322. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G. A global satellite-assisted precipitation climatology. Earth Syst. Sci. Data 2015, 7, 275. [Google Scholar] [CrossRef]
- Cools, J.; Vanderkimpen, P.; El Afandi, G.; Abdelkhalek, A.; Fockedey, S.; El Sammany, M.; Abdallah, G.; El Bihery, M.; Bauwens, W.; Huygens, M. An early warning system for flash floods in hyper-arid egypt. Nat. Hazards Earth Syst. Sci. 2012, 12, 443–457. [Google Scholar] [CrossRef]
- Abuzied, S.; Yuan, M.; Ibrahim, S.; Kaiser, M.; Saleem, T. Geospatial risk assessment of flash floods in nuweiba area, egypt. J. Arid Environ. 2016, 133, 54–72. [Google Scholar] [CrossRef]
- Vries, A.J.; Tyrlis, E.; Edry, D.; Krichak, S.O.; Steil, B.; Lelieveld, J. Extreme precipitation events in the middle east: Dynamics of the active red sea trough. J. Geophys. Res. Atmos. 2013, 118, 7087–7108. [Google Scholar] [CrossRef]
- Krichak, S.O.; Tsidulko, M.; Alpert, P. November 2, 1994, severe storms in the southeastern mediterranean. Atmos. Res. 2000, 53, 45–62. [Google Scholar] [CrossRef]
- FloodList. Egypt—Floods in Alexandria Leave at Least 6 Dead. Available online: http://www.webcitation.org/76IuxIySz (accessed on 23 September 2018).
- FloodList. Updated: Egypt—Floods Strike Again—25 Killed in Beheira and Alexandria. Available online: http://www.webcitation.org/76Iuk4xH7 (accessed on 23 September 2018).
- Elnazer, A.A.; Salman, S.A.; Asmoay, A.S. Flash flood hazard affected ras gharib city, red sea, Egypt: A proposed flash flood channel. Nat. Hazards 2017, 89, 1389–1400. [Google Scholar] [CrossRef]
- IFRC. Emergency Plan of Action Final Report, Egypt: Floods. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/MDREG013dfr.pdf (accessed on 26 April 2018).
- FloodList. Eastern Mediterranean—Deadly Flash Floods after Heavy Rain. Available online: http://www.webcitation.org/76Iv1Fxmq (accessed on 23 September 2018).
- Hamed, K.H. Stochastic investigation of the gerd-ahd interaction through first impoundment and beyond. In Grand Ethiopian Renaissance Dam Versus Aswan High Dam: A View from Egypt; Negm, A.M., Abdel-Fattah, S., Eds.; Springer: Cham, Switzerland, 2019; pp. 95–117. [Google Scholar]
- Sharaky, A.M.; Hamed, K.H.; Mohamed, A.B. Model-based optimization for operating the Ethiopian renaissance dam on the Blue Nile river. In Grand Ethiopian renaissance dam versus Aswan high dam: A view from Egypt; Negm, A.M., Abdel-Fattah, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 119–148. [Google Scholar]
- Derin, Y.; Anagnostou, E.; Berne, A.; Borga, M.; Boudevillain, B.; Buytaert, W.; Chang, C.-H.; Delrieu, G.; Hong, Y.; Hsu, Y.C.; et al. Multiregional satellite precipitation products evaluation over complex terrain. J. Hydrometeorol. 2016, 17, 1817–1836. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Al-Zahrani, M.A.; Sharif, H.O. Assessment of global precipitation measurement satellite products over saudi arabia. J. Hydrol. 2018, 559, 1–12. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Cressman, K.; Connor, S.J. Evaluating detection skills of satellite rainfall estimates over desert locust recession regions. J. Appl. Meteorol. Climatol. 2010, 49, 1322–1332. [Google Scholar] [CrossRef]
- Basheer, M.; Elagib, N.A. Performance of satellite-based and gpcc 7.0 rainfall products in an extremely data-scarce country in the nile basin. Atmos. Res. 2019, 215, 128–140. [Google Scholar] [CrossRef]
- Kazamias, A.P.; Sapountzis, M.; Lagouvardos, K. Evaluation and intercomparison of gpm-imerg and trmm 3b42 daily precipitation products over Greece. In Proceedings of the Fifth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2017), Paphos, Cyprus, 20–23 March 2017; p. 8. [Google Scholar]
- Retalis, A.; Katsanos, D.; Tymvios, F.; Michaelides, S. Validation of the first years of gpm operation over cyprus. Remote Sens. 2018, 10, 1520. [Google Scholar] [CrossRef]
- Katsanos, D.; Retalis, A.; Michaelides, S. Validation of a high-resolution precipitation database (chirps) over cyprus for a 30-year period. Atmos. Res. 2016, 169, 459–464. [Google Scholar] [CrossRef]
- Tuo, Y.; Duan, Z.; Disse, M.; Chiogna, G. Evaluation of precipitation input for swat modeling in alpine catchment: A case study in the adige river basin (Italy). Sci. Total Environ. 2016, 573, 66–82. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Ghani, M.M.; Huerta-Martínez, F.M.; Hongyan, L.; Qureshi, R. The desert of egypt. In Plant Responses to Hyperarid Desert Environments; Springer: Cham, Switzerland, 2017; pp. 11–20. [Google Scholar]
- Aonashi, K.; Awaka, J.; Hirose, M.; Kozu, T.; Kubota, T.; Liu, G.; Shige, S.; Kida, S.; Seto, S.; Takahashi, N. Gsmap passive microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteorol. Soc. Jpn. Ser. II 2009, 87, 119–136. [Google Scholar] [CrossRef]
- Ushio, T.; Sasashige, K.; Kubota, T.; Shige, S.; Okamoto, K.i.; Aonashi, K.; Inoue, T.; Takahashi, N.; Iguchi, T.; Kachi, M. A kalman filter approach to the global satellite mapping of precipitation (gsmap) from combined passive microwave and infrared radiometric data. J. Meteorol. Soc. Jpn. Ser. II 2009, 87, 137–151. [Google Scholar] [CrossRef]
- Mega, T.; Ushio, T.; Kubota, T.; Kachi, M.; Aonashi, K.; Shige, S. Gauge adjusted global satellite mapping of precipitation (gsmap_gauge). In Proceedings of the 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014; pp. 1–4. [Google Scholar]
- Guo, H.; Chen, S.; Bao, A.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.; Stepanian, P.M. Early assessment of integrated multi-satellite retrievals for global precipitation measurement over china. Atmos. Res. 2016, 176–177, 121–133. [Google Scholar] [CrossRef]
- Beck, H.E.; Pan, M.; Roy, T.; Weedon, G.P.; Pappenberger, F.; van Dijk, A.I.J.M.; Huffman, G.J.; Adler, R.F.; Wood, E.F. Daily evaluation of 26 precipitation datasets using stage-iv gauge-radar data for the conus. Hydrol. Earth Syst. Sci. Discuss. 2018, 2018, 1–23. [Google Scholar] [CrossRef]
- Rozante, J.; Vila, D.; Barboza Chiquetto, J.; Fernandes, A.; Souza Alvim, D. Evaluation of trmm/gpm blended daily products over brazil. Remote Sens. 2018, 10, 882. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and nse performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Radcliffe, D.E.; Mukundan, R. Prism vs. Cfsr precipitation data effects on calibration and validation of swat models. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 89–100. [Google Scholar] [CrossRef]
- Perkins, S.E.; Pitman, A.J.; Holbrook, N.J.; McAneney, J. Evaluation of the ar4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over australia using probability density functions. J. Clim. 2007, 20, 4356–4376. [Google Scholar] [CrossRef]
- Tan, M.; Ibrahim, A.; Duan, Z.; Cracknell, A.; Chaplot, V. Evaluation of six high-resolution satellite and ground-based precipitation products over malaysia. Remote Sens. 2015, 7, 1504. [Google Scholar] [CrossRef]
- McCollum, J.R.; Gruber, A.; Ba, M.B. Discrepancy between gauges and satellite estimates of rainfall in equatorial africa. J. Appl. Meteorol. 2000, 39, 666–679. [Google Scholar] [CrossRef]
- Wang, N.-Y.; Liu, C.; Ferraro, R.; Wolff, D.; Zipser, E.; Kummerow, C. Trmm 2a12 land precipitation product-status and future plans. J. Meteorol. Soc. Jpn. Ser. II 2009, 87A, 237–253. [Google Scholar] [CrossRef]
- Seto, S.; Kubota, T.; Iguchi, T.; Takahashi, N.; Oki, T. An evaluation of over-land rain rate estimates by the gsmap and gprof algorithms: The role of lower-frequency channels. J. Meteorol. Soc. Jpn. Ser. II 2009, 87A, 183–202. [Google Scholar] [CrossRef]
- Wei, G.; Lü, H.; Crow, W.; Zhu, Y.; Wang, J.; Su, J. Evaluation of satellite-based precipitation products from imerg v04a and v03d, cmorph and tmpa with gauged rainfall in three climatologic zones in China. Remote Sens. 2018, 10, 30. [Google Scholar] [CrossRef]
- Lu, X.; Tang, G.; Wei, M.; Yang, L.; Zhang, Y. Evaluation of multi-satellite precipitation products in xinjiang, China. Int. J. Remote Sens. 2018, 39, 7437–7462. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Gebregiorgis, A.; Xue, X.; Zhang, X. Inter-comparison of high-resolution satellite precipitation products over central asia. Remote Sens. 2015, 7, 7181. [Google Scholar] [CrossRef]
Study | Study Area | Climate Type | Product | Main Findings |
---|---|---|---|---|
Mahmoud, et al. [33] | Saudi Arabia | Hot desert | IMERG early, late and FR | FR performed better than earlier runs, with high bias in some regions |
Dinku, et al. [34] | North Africa | Arid and Semi-arid | GSMaP and 6 other products | The probability of detection was ≤20% and false alarm ratio ≥84% |
Basheer and Elagib [35] | South Sudan | Semi-arid and sub-humid | CHIRPS v2.0 and 5 other products | On a monthly and annual scale, CHIRPS was ranked as the 2nd best with high RMSE. |
Kazamias et al. [36] | Greece | Mediterranean | IMERG FR and TRMM 3B42 | IMERG showed a strong bias in the west and a good overall correlation (0.60) |
Retalis et al. [37] | Cyprus | Mediterranean | IMERG | IMERG underestimates rainfall |
Katsanos et al. [38] | Cyprus | Mediterranean | CHIRPS | CHIRPS had good correlation but overestimated rainfall |
Caracciolo et al. [18] | Sardinia and Sicily (Italy) | Mediterranean | IMERG early and FR | IMERG showed a high correlation (0.8) on a daily level with a systematic bias as rainfall amount increased |
Tuo et al. [39] | Adige River basin (Italy) | Humid subtropical, and continental | CHIRPS and TRMM | CHIRPS rainfall produced satisfactory streamflow estimation |
WMO ID | % Missing Data | Count of Wet Days | Max Rainfall (mm/Day) | WMO ID | % Missing Data | Count of Wet Days | Max Rainfall (mm/Day) |
---|---|---|---|---|---|---|---|
623050 | 15% | 53 | 70.1 | 624170 | 5% | 7 | 8.89 |
623060 | 2% | 103 | 50.04 | 624190 | 24% | 1 | 0.25 |
623090 | 11% | 100 | 39.12 | 624200 | 3% | 8 | 102.11 |
623180 | 3% | 141 | 252.22 | 624230 | 9% | 1 | 0.51 |
623250 | 4% | 113 | 71.88 | 624320 | 31% | 1 | 72.14 |
623330 | 3% | 81 | 90.93 | 624350 | 3% | 2 | 1.02 |
623370 | 7% | 77 | 23.11 | 624400 | 6% | 16 | 101.09 |
623570 | 13% | 15 | 70.1 | 624520 | 10% | 27 | 102.11 |
623660 | 2% | 61 | 99.06 | 624550 | 3% | 38 | 7.11 |
623870 | 3% | 9 | 76.2 | 624580 | 3% | 24 | 6.1 |
623930 | 2% | 4 | 8.89 | 624590 | 6% | 17 | 99.06 |
623980 | 14% | 1 | 7.87 | 624630 | 2% | 16 | 102.11 |
624030 | 7% | 4 | 3.05 | 624650 | 5% | 2 | 1.02 |
624050 | 2% | 15 | 50.04 | 624760 | 31% | 3 | 7.87 |
624140 | 4% | 7 | 14.99 | - | - | - | - |
Index | Range | Optimal Value | |
---|---|---|---|
(1) | 0 to +∞ | 0 | |
(2) | −∞ to 1 | 1 | |
(3) | 0 to 1 | 1 |
Index | Optimal Value | |
---|---|---|
(4) | 1 | |
(5) | 0 | |
(6) | 1 | |
(7) | 1 |
Po ≥ Threshold | Po < Threshold | |
---|---|---|
Ps ≥ Threshold | Hits | False Alarms |
Ps < Threshold | Misses | Correct Negatives |
Rainfall Intensity Class | Daily Rainfall Threshold |
---|---|
All-events | No threshold |
No/tiny rainfall | P < 1 mm |
Light rainfall | 1 mm ≤ P < 2 mm |
Low moderate rainfall | 2 mm ≤ P < 5 mm |
High moderate rainfall | 5 mm ≤ P < 10 mm |
Heavy rainfall | P ≥ 10 mm |
Rainfall Intensity Class | Count of Events |
---|---|
All-events | 45,473 |
No/tiny rainfall | 44,803 |
Light rainfall | 140 |
Low–moderate rainfall | 286 |
High–moderate rainfall | 151 |
Heavy rainfall | 93 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nashwan, M.S.; Shahid, S.; Wang, X. Assessment of Satellite-Based Precipitation Measurement Products over the Hot Desert Climate of Egypt. Remote Sens. 2019, 11, 555. https://doi.org/10.3390/rs11050555
Nashwan MS, Shahid S, Wang X. Assessment of Satellite-Based Precipitation Measurement Products over the Hot Desert Climate of Egypt. Remote Sensing. 2019; 11(5):555. https://doi.org/10.3390/rs11050555
Chicago/Turabian StyleNashwan, Mohamed Salem, Shamsuddin Shahid, and Xiaojun Wang. 2019. "Assessment of Satellite-Based Precipitation Measurement Products over the Hot Desert Climate of Egypt" Remote Sensing 11, no. 5: 555. https://doi.org/10.3390/rs11050555
APA StyleNashwan, M. S., Shahid, S., & Wang, X. (2019). Assessment of Satellite-Based Precipitation Measurement Products over the Hot Desert Climate of Egypt. Remote Sensing, 11(5), 555. https://doi.org/10.3390/rs11050555