Local Severe Storm Tracking and Warning in Pre-Convection Stage from the New Generation Geostationary Weather Satellite Measurements
<p>Spatial distributions of three typical convective storm systems from April to October of 2016. Gray, orange, and red solid circles respectively represent slight (or none), medium, and severe convective storm systems.</p> "> Figure 2
<p>A real case of tracked convective storm system at 19:30 UTC on 05 July 2016 in Guangdong province of China based on H08/AHI observations. The first small sub-figure at the upper-left corner is the grayscale 10.4 μm BT image with coast line (yellow solid line). The other three small colorful sub-figures at the left panel represent 10.4 μm BT images at 19:10, 19:20, and 19:30 UTC, respectively. The colorful area in right panel represents the pixels of H08/AHI with BT<238 K at 19:30 UTC on 05 July 2016.</p> "> Figure 3
<p>The flow chart of SWIPE model training and predicting based on RF algorithm. It contains three steps: First, it tracks potential convective cloud clusters. The second step is to divide the convective storm system dataset into three different types (weak, medium, and severe). Finally, the RF algorithm is used to train and develop a convection intensity classification statistical model — SWIPE. <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi mathvariant="normal">T</mi> </mrow> </semantics></math> represents the cloud top cooling rate.</p> "> Figure 4
<p>Effects of total number of trees in the forest (n_estimators), maximum depth of the tree (max_depth), and random split predictor variables (max_features = 7 (upper left), 8 (upper right), 9 (middle left), 10 (middle right), and 11 (lower left)) on OOB scores for the RF classification models of convective storm system.</p> "> Figure 5
<p>A sudden convective storm case tracked by the SWIPE model at 07:00 UTC on 23 April 2018 in the Hainan province of China. The sub-figures in the first row represent the results of SWIPE index and the grayscale 10.4 μm BT image with coast line (yellow solid line). The colorful sub-figures at the second row represent the 10.4 μm BT images. The sub-figures in the third row are the accumulated precipitation in the past one hour (mm/h) measured by the ground rainfall gauge stations. The sub-figures in the first and second columns signify the two contiguous results or scenarios when this convective storm case in Hainan province is tracked by the SWIPE model at the first time. The sub-figures in the third and fourth columns represent the results or scenarios with the first rainfall measurement and the maximum rain rate, respectively.</p> "> Figure 6
<p>Same as <a href="#remotesensing-11-00383-f005" class="html-fig">Figure 5</a>, for a sudden convective storm case at 03:40 UTC on 27 July 2018 in Shandong province of China.</p> ">
Abstract
:1. Introduction
2. Data
3. Convective-Tracking Method and Dataset
3.1. Spatial Distributions
3.2. Convective-Tracking
3.3. Datasets
4. Statistical Prediction Model
4.1. RF Classification Model Training
4.2. SWIPE Model Flowchart
4.3. SWIPE Model Evaluation
4.4. Relative Importance Predictors
5. Case Studies
5.1. Case-1 at 07:00 UTC on 23 April 2018
5.2. Case-2 at 03:40 UTC on 27 July 2018
6. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Taylor, C.M.; Belušić, D.; Guichard, F.; Parker, D.J.; Vischel, T.; Bock, O.; Harris, P.P.; Janicot, S.; Klein, C.; Panthou, G. Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature 2017, 544, 475–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proud, S.R. Analysis of aircraft flights near convective weather over Europe. Weather 2015, 70, 292–296. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, S.; Dai, Y.; Bornstein, R. Numerical simulation of urban land surface effects on summer convective rainfall under different UHI intensity in Beijing. J. Geophys. Res. Atmos. 2017, 122. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Mackenzie, W.M., Jr.; Koenig, M.; Muller, S. Cloud-Top Properties of Growing Cumulus prior to Convective Initiation as Measured by Meteosat Second Generation. Part I: Infrared Fields. J. Appl. Meteorol. Climatol. 2009, 49, 521–534. [Google Scholar] [CrossRef]
- Weckwerth, T.M. Review of convection initiation and motivation for IHOP_2002. Mon. Weather Rev. 2006, 134, 5–22. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Rosenfeld, D.; Manzato, A. Evaluation of Geostationary Satellite Observations and the Development of a 1–2 h Prediction Model for Future Storm Intensity. J. Geophys. Res. Atmos. 2016, 121. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Bedka, K.M.; Paech, S.J.; Litten, L.A. A Statistical Evaluation of GOES Cloud-Top Properties for Nowcasting Convective Initiation. Mon. Weather Rev. 2010, 136, 4899–4914. [Google Scholar] [CrossRef]
- Min, M.; Deng, J.; Liu, C.; Guo, J.; Lu, N.; Hu, X.; Chen, L.; Zhang, P.; Lu, Q.; Wang, L. An investigation of the implications of lunar illumination spectral changes for Day/Night Band-based cloud property retrieval due to lunar phase transition. J. Geophys. Res. Atmos. 2017, 122, 9233–9244. [Google Scholar] [CrossRef]
- Ai, Y.; Li, J.; Shi, W.; Schmit, T.J.; Cao, C.; Li, W. Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements. J. Geophys. Res. Atmos. 2017, 122, 1700–1712. [Google Scholar] [CrossRef]
- Maddox, R.A. Meoscale Convective Complexes. Bull. Am. Meteorol. Soc. 1980, 61, 469–475. [Google Scholar] [CrossRef]
- Laing, A.G.; Carbone, R.E.; Levizzani, V. Cycles and Propagation of Deep Convection over Equatorial Africa. Mon. Weather Rev. 2010, 139, 2832–2853. [Google Scholar] [CrossRef]
- Ai, Y.; Li, W.; Meng, Z.; Li, J. Life Cycle Characteristics of MCSs in Middle East China Tracked by Geostationary Satellite and Precipitation Estimates. Mon. Weather Rev. 2016, 144. [Google Scholar] [CrossRef]
- Bedka, K.; Brunner, J.; Dworak, R.; Feltz, W.; Otkin, J.; Greenwald, T. Objective Satellite-Based Detection of Overshooting Tops Using Infrared Window Channel Brightness Temperature Gradients. J. Appl. Meteorol. Climatl. 2010, 49, 181–202. [Google Scholar] [CrossRef]
- Wang, L. Cloud Classification of GMS-5 Data and Its Application in Rainfall Estimation. Sci. Atmos. Sin. 1998, 108, 1539–1543. [Google Scholar]
- Thies, B.; Nauß, T.; Bendix, J. Precipitation process and rainfall intensity differentiation using Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager data. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Deng, M.; Lee, S.S.; Wang, F.; Li, Z.; Zhai, P.; Liu, H.; Lv, W.; Yao, W.; Li, X. Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses. J. Geophys. Res. Atmos. 2016, 121, 6472–6488. [Google Scholar] [CrossRef]
- Ackerman, S.A. Global Satellite Observations of Negative Brightness Temperature Differences between 11 and 6.7 µm. J. Atmos. Sci. 1996, 53, 2803–2812. [Google Scholar] [CrossRef] [Green Version]
- Shang, H.; Letu, H.; Nakajima, T.Y.; Wang, Z.; Ma, R.; Wang, T.; Lei, Y.; Ji, D.; Li, S.; Shi, J. Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Schmit, T.J.; Li, J.; Gurka, J.J.; Goldberg, M.D.; Schrab, K.J.; Li, J.; Feltz, W.F. The GOES-R Advanced Baseline Imager and the Continuation of Current Sounder Products. J. Appl. Meteorol. Climatol. 2008, 47, 2696–2711. [Google Scholar] [CrossRef]
- Min, M.; Chunqiang, W.U.; Chuan, L.I.; Liu, H.; Na, X.U.; Xiao, W.U.; Chen, L.; Wang, F.; Sun, F.; Qin, D. Developing the Science Product Algorithm Testbed for Chinese Next-Generation Geostationary Meteorological Satellites: Fengyun-4 Series. J. Meteorol. Res. 2017, 31, 708–719. [Google Scholar] [CrossRef]
- Williams, J.K.; Ahijevych, D.A.; Kessinger, C.J.; Saxen, T.R.; Steiner, M.; Dettling, S. A machine learning approach to finding weather regimes and skillful predictor combinations for short-term storm forecasting. In Proceedings of the 13th Conference on Aviation, Range and Aerospace Meteorology, American Meteorological Society, New Orleans, LA, USA, 20–24 January 2008. [Google Scholar]
- Min, M.; Bai, C.; Guo, J.; Sun, F.; Liu, C.; Wang, F.; Xu, H.; Tang, S.; Li, B.; Di, D.; et al. Estimating summertime precipitation from Himawari-8 and global forecast system based on machine learning. IEEE Trans. Geosci. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Karasiak, N. Remote Sensing of Distinctive Vegetation in Guiana Amazonian Park. In QGIS and Applications in Agriculture and Forest; Baghdadi, N., Mallet, C., Eds.; Wiley: Hoboken, NJ, USA, 2018; pp. 215–245. [Google Scholar]
- Kühnlein, M.; Appelhans, T.; Thies, B.; Nauss, T. Precipitation estimates from MSG SEVIRI daytime, night-time and twilight data with random forests. J. Appl. Meteorol. Climatol. 2014, 53, 2457–2480. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Otkin, J.; Schmit, T.J.; Liu, C.Y. Warning information in a preconvection environment from the geostationary advanced infrared sounding system—A simulation study using the IHOP case. J. Appl. Meteorol. Climatol. 2011, 50, 776–783. [Google Scholar] [CrossRef]
- Min, M.; Zhang, Z. On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing. J. Quant. Spectr. Radiat. Transf. 2014, 142, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Min, M.; Wang, P.; Campbell, J.R.; Zong, X.; Li, Y. Midlatitude cirrus cloud radiative forcing over China. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Roman, J.; Knuteson, R.; Ackerman, S.; Revercomb, H. Estimating minimum detection times for satellite remote sensing of trends in mean and extreme precipitable water vapor. J. Clim. 2016, 29. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P. Algorithm Theoretical Basis Document (ATBD) Version 5.2: NASA Global Precipitation Measurement (GPM) Integrated Multi-SatellitE Retrievals for GPM (IMERG). NASA: Greenbelt, MD, USA, 2018. Available online: http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2.pdf (accessed on 13 February 2019).
- Tang, G.; Zeng, Z.; Long, D.; Guo, X.; Yong, B.; Zhang, W.; Hong, Y. Statistical and hydrological comparisons between TRMM and GPM level-3 products over a midlatitude basin: Is day-1 IMERG a good successor for TMPA 3B42V7? J. Hydrometeorol. 2015, 17. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satell. Appl. Surface Hydrol. 2010, 9, 3–22. [Google Scholar]
- Yihui, D.; Chan, J.C.L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar] [CrossRef]
- Yun, K.S.; Lee, J.Y.; Ha, K.J. Recent intensification of the South and East Asian monsoon contrast associated with an increase in the zonal tropical SST gradient. J. Geophys. Res. Atmos. 2014, 119, 8104–8116. [Google Scholar] [CrossRef] [Green Version]
- Glickman, T.S. Glossary of Meteorology; American Meteorological Society: Boston, MA, USA, 2000. [Google Scholar]
- Morel, C.; Sénési, S.; Autones, F. Building Upon Saf-Nwc Products: Use of the Rapid Developing Thunderstorms (Rdt) Product In MÉTÉO-France Nowcasting Tools. Meteorol. Satell. Data Users’ Conf. 2002, 248–255. [Google Scholar]
- Sieglaff, J.M.; Cronce, L.M.; Feltz, W.F.; Bedka, K.M.; Pavolonis, M.J.; Heidinger, A.K. Nowcasting convective storm initiation using satellite-based box-averaged cloud-top cooling and cloud-type trends. J. Appl. Meteorol. Climatol. 2011, 50, 110–126. [Google Scholar] [CrossRef]
- Stensrud, D.J.; Fritsch, J.M. Mesoscale convective systems in weakly forced large-scale environments. part ii: Generation of a mesoscale initial condition. Mon. Weather Rev. 1994, 122, 2068–2083. [Google Scholar] [CrossRef]
- Guo, J.; Su, T.; Li, Z.; Miao, Y.; Li, J.; Liu, H.; Xu, H.; Cribb, M.; Zhai, P. Declining frequency of summertime local-scale precipitation over eastern China from 1970 to 2010 and its potential link to aerosols. Geophys. Res. Lett. 2017, 44. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, S.; Lizarazo, I. Detecting and tracking mesoscale precipitating objects using machine learning algorithms. Int. J. Remote Sens. 2017, 38, 5045–5068. [Google Scholar] [CrossRef]
- Pavolonis, M.J.; Feltz, W.F.; Heidinger, A.K.; Gallina, G.M. A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. J. Atmos. Ocean. Technol. 2006, 23, 1422–1444. [Google Scholar] [CrossRef]
- Reed, R.J.; Hollingsworth, A.; Heckley, W.A.; Delsol, F. An Evaluation of the Performance of the ECMWF Operational System in Analyzing and Forecasting Easterly Wave Disturbances over Africa and the Tropical Atlantic. Mon. Weather Rev. 2009, 116, 824–865. [Google Scholar]
- Laing, A.G.; Fritsch, J.M. The Large-Scale Environments of the Global Populations of Mesoscale Convective Complexes. Mon. Weather Rev. 2000, 128, 2756–2776. [Google Scholar] [CrossRef]
- Zhang, G.J. Roles of tropospheric and boundary layer forcing in the diurnal cycle of convection in the U.S. southern great plains. Geophys. Res. Lett. 2003, 30, 665–678. [Google Scholar] [CrossRef]
- Liu, Y.; Chawla, N.V.; Harper, M.P.; Shriberg, E.; Stolcke, A. A study in machine learning from imbalanced data for sentence boundary detection in speech. Comput. Speech Lang. 2006, 20, 468–494. [Google Scholar] [CrossRef]
- Tahir, M.A.; Kittler, J.; Yan, F. Inverse random under sampling for class imbalance problem and its application to multi-label classification. Pattern Recognit. 2012, 45, 3738–3750. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences. In International Geophysics, 2nd ed.; Academic Press: Cambridge, MA, USA, 2005; p. 91. [Google Scholar]
- Fu, G.B.; Charles, S.P.; Yu, J.J.; Liu, C.M. Decadal climatic variability, trends, and future scenarios for the north China plain. J. Clim. 2009, 22, 2111–2123. [Google Scholar] [CrossRef]
- Guo, J.; Liu, H.; Li, Z.; Rosenfeld, D.; Jiang, M.; Xu, W.; Jiang, J.; He, J.; Chen, D.; Min, M.; et al. Aerosol-induced changes in the vertical structure of precipitation: A perspective of TRMM precipitation radar. Atmos. Chem. Phys. 2018, 18, 13329–13343. [Google Scholar] [CrossRef]
- Sun, J.; Chen, M.; Wang, Y. A frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 forecast demonstration project. Weather Forecast. 2010, 25, 4236–4248. [Google Scholar] [CrossRef]
Month | Severe | Medium | Slight (or None) |
---|---|---|---|
April | 72 | 82 | 5426 |
May | 133 | 266 | 11,412 |
June | 76 | 289 | 10,492 |
July | 78 | 511 | 14,019 |
August | 123 | 497 | 15,835 |
September | 121 | 493 | 16,380 |
October | 106 | 396 | 11,538 |
Classification | Variable | Unit |
---|---|---|
Satellite measurements | T6.2-10.4, T6.9-10.4, T7.3-10.4, T8.6-10.4, T9.6-10.4, T10.4, T11.2-10.4, T12.3-10.4, ∆T13.3-10.4, ∆T8.6-11.2, ∆T11.2-12.3, ∆T3.9-11.2, ∆T3.9-7.3 | K |
Area (pixel number of convective storm system) | ||
GFS NWP | K-Index | °C |
CAPE (Convection Available Potential Energy) | J·kg−1 | |
CIN (Convective Inhibition) | J·kg−1 | |
LI (Lifted Index) | ||
EBS (Effective Bulk Shear) | m·s−1 | |
TPW (Total Precipitable Water) | mm | |
(Pseudo-equivalent potential temperature at 850/925 hPa) | K | |
PV (Potential Vorticity) | ||
Div925/850/10 (Convergence at 925 and 850 hPa/10m) | s−1 | |
MR850/925 (Mixing Ratio at 850/925 hPa) | g·kg−1 |
Scenario-1 | Scenario-2 | Scenario-3 | Scenario-0 (Original) | |
---|---|---|---|---|
Weak | 662 | 2388 | 4776 | 79,549 |
Medium | 662 | 2388 | 2388 | 2388 |
Severe | 662 | 662 | 662 | 662 |
Proportion | 1:1:1 | 1:3.6:3.6 | 1:3.6:7.2 | 1:3.6:120 |
Measured Value | |||
1 | 0 | ||
Expected value | 1 | A | C |
0 | B | D |
POD | FAR | CSI | HR | ||
---|---|---|---|---|---|
Scenario-1 | Severe | 0.66 | 0.71 | 0.25 | 0.79 |
Medium | 0.70 | 0.91 | 0.39 | ||
Scenario-2 | Severe | 0.34 | 0.20 | 0.31 | 0.82 |
Medium | 0.90 | 0.88 | 0.43 | ||
Scenario-3 | Severe | 0.32 | 0.17 | 0.30 | 0.90 |
Medium | 0.79 | 0.83 | 0.40 | ||
Scenario-0 | Severe | 0.30 | 0.18 | 0.28 | 0.97 |
Medium | 0.11 | 0.47 | 0.10 | ||
Scenario-S | Severe | 0.69 | 0.69 | 0.27 | 0.79 |
Medium | 0.62 | 0.92 | 0.08 |
Classification | Variable Score | Ranking | Variable Score | Ranking |
---|---|---|---|---|
Satellite | max = 0.148 | 1 | ∆ max = 0.0056 | 27 |
max = 0.107 | 2 | min = 0.0055 | 28 | |
max = 0.1061 | 3 | ∆ min = 0.0053 | 29 | |
max = 0.0849 | 4 | ∆ min = 0.0051 | 31 | |
min = 0.0656 | 5 | 10per warm = 0.005 | 32 | |
Area = 0.0638 | 6 | min = 0.0045 | 34 | |
mean = 0.0438 | 7 | min = 0.0038 | 35 | |
∆ max = 0.0417 | 8 | ∆ max = 0.0035 | 38 | |
max = 0.0243 | 9 | mean = 0.0033 | 40 | |
mean = 0.0202 | 10 | min = 0.0032 | 41 | |
∆ min = 0.0177 | 11 | ∆ min = 0.003 | 43 | |
max = 0.0155 | 12 | max = 0.0029 | 44 | |
mean = 0.0127 | 13 | ∆ max = 0.0026 | 49 | |
mean = 0.0126 | 14 | ∆ mean = 0.0025 | 53 | |
min = 0.011 | 15 | min = 0.0023 | 55 | |
max = 0.0083 | 18 | mean = 0.0017 | 65 | |
min = 0.0071 | 21 | ∆ mean = 0.0016 | 66 | |
∆ min = 0.0066 | 22 | mean = 0.0015 | 71 | |
mean = 0.0064 | 24 | ∆ mean = 0.0012 | 76 | |
∆ mean = 0.0059 | 26 | ∆ max = 0.0011 | 77 | |
∆ mean = 0.0009 | 78 | |||
GFS | CIN min = 0.0104 | 16 | Li min = 0.0021 | 57 |
min = 0.0094 | 17 | PV min = 0.002 | 58 | |
min = 0.0078 | 19 | K-Index max = 0.002 | 59 | |
TPW min = 0.0075 | 20 | mean = 0.0019 | 60 | |
max = 0.0065 | 23 | K-Index mean = 0.0018 | 61 | |
min = 0.0063 | 25 | mean = 0.0018 | 62 | |
min = 0.0053 | 30 | max = 0.0018 | 63 | |
Li max = 0.0049 | 33 | mean = 0.0017 | 64 | |
CIN max = 0.0037 | 36 | EBS max = 0.0015 | 67 | |
PV max = 0.0037 | 37 | PV mean = 0.0015 | 68 | |
min = 0.0035 | 39 | TPW mean = 0.0015 | 69 | |
max = 0.0032 | 42 | max = 0.0015 | 70 | |
mean = 0.0028 | 45 | CAPE mean = 0.0014 | 72 | |
K-Index min = 0.0028 | 46 | max = 0.0014 | 73 | |
min = 0.0028 | 47 | CIN mean = 0.0012 | 74 | |
TPW max = 0.0027 | 48 | mean = 0.0012 | 75 | |
Li mean = 0.0026 | 50 | max = 0.0008 | 79 | |
mean = 0.0025 | 51 | EBS mean = 0.0007 | 80 | |
max = 0.0025 | 52 | EBS min = 0.0007 | 81 | |
min = 0.0023 | 54 | CAPE max = 0.0006 | 82 | |
mean = 0.0021 | 56 | CAPE min = 0.0005 | 83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Min, M.; Li, J.; Sun, F.; Di, D.; Ai, Y.; Li, Z.; Qin, D.; Li, G.; Lin, Y.; et al. Local Severe Storm Tracking and Warning in Pre-Convection Stage from the New Generation Geostationary Weather Satellite Measurements. Remote Sens. 2019, 11, 383. https://doi.org/10.3390/rs11040383
Liu Z, Min M, Li J, Sun F, Di D, Ai Y, Li Z, Qin D, Li G, Lin Y, et al. Local Severe Storm Tracking and Warning in Pre-Convection Stage from the New Generation Geostationary Weather Satellite Measurements. Remote Sensing. 2019; 11(4):383. https://doi.org/10.3390/rs11040383
Chicago/Turabian StyleLiu, Zijing, Min Min, Jun Li, Fenglin Sun, Di Di, Yufei Ai, Zhenglong Li, Danyu Qin, Guicai Li, Yinjing Lin, and et al. 2019. "Local Severe Storm Tracking and Warning in Pre-Convection Stage from the New Generation Geostationary Weather Satellite Measurements" Remote Sensing 11, no. 4: 383. https://doi.org/10.3390/rs11040383
APA StyleLiu, Z., Min, M., Li, J., Sun, F., Di, D., Ai, Y., Li, Z., Qin, D., Li, G., Lin, Y., & Zhang, X. (2019). Local Severe Storm Tracking and Warning in Pre-Convection Stage from the New Generation Geostationary Weather Satellite Measurements. Remote Sensing, 11(4), 383. https://doi.org/10.3390/rs11040383