Validation of the First Years of GPM Operation over Cyprus
"> Figure 1
<p>The island of Cyprus, with the location of the stations used; stations are grouped in terms of their elevation.</p> "> Figure 2
<p>The annual average precipitation of Cyprus for the period 1916–2017.</p> "> Figure 3
<p>Monthly precipitation from GPM (average of 84 grid cells) versus gauges (average of 136 stations) from April 2014 to February 2017, for all stations (<b>a</b>), and the corresponding scatter plot (<b>b</b>). Upper and lower limits of the monthly precipitation bars refer to corresponding standard deviation.</p> "> Figure 3 Cont.
<p>Monthly precipitation from GPM (average of 84 grid cells) versus gauges (average of 136 stations) from April 2014 to February 2017, for all stations (<b>a</b>), and the corresponding scatter plot (<b>b</b>). Upper and lower limits of the monthly precipitation bars refer to corresponding standard deviation.</p> "> Figure 4
<p>Monthly precipitation from GPM versus gauges from April 2014–February 2017, for stations with elevation from (<b>a</b>) 0 to 150 m; (<b>b</b>) 150 to 300 m; (<b>c</b>) 300 to 500 m; (<b>d</b>) 500 to 1000 m; (<b>e</b>) greater than 1000 m.</p> "> Figure 4 Cont.
<p>Monthly precipitation from GPM versus gauges from April 2014–February 2017, for stations with elevation from (<b>a</b>) 0 to 150 m; (<b>b</b>) 150 to 300 m; (<b>c</b>) 300 to 500 m; (<b>d</b>) 500 to 1000 m; (<b>e</b>) greater than 1000 m.</p> "> Figure 4 Cont.
<p>Monthly precipitation from GPM versus gauges from April 2014–February 2017, for stations with elevation from (<b>a</b>) 0 to 150 m; (<b>b</b>) 150 to 300 m; (<b>c</b>) 300 to 500 m; (<b>d</b>) 500 to 1000 m; (<b>e</b>) greater than 1000 m.</p> "> Figure 5
<p>Scatter plots of monthly precipitation from GPM versus gauges from April 2014–February 2017, for stations with elevation from (<b>a</b>) 0 to 150 m; (<b>b</b>) 150 to 300 m; (<b>c</b>) 300 to 500 m; (<b>d</b>) 500 to 1000 m; (<b>e</b>) greater than 1000 m.</p> "> Figure 5 Cont.
<p>Scatter plots of monthly precipitation from GPM versus gauges from April 2014–February 2017, for stations with elevation from (<b>a</b>) 0 to 150 m; (<b>b</b>) 150 to 300 m; (<b>c</b>) 300 to 500 m; (<b>d</b>) 500 to 1000 m; (<b>e</b>) greater than 1000 m.</p> "> Figure 6
<p>Statistical scores based on contingency tables: BIAS, POD, FAR (<b>a</b>); POFD, SR, TS, HK (<b>b</b>).</p> "> Figure 7
<p>Frequencies of correlation coefficients (<b>a</b>) and frequency distribution of correlation coefficients (<b>b</b>).</p> "> Figure 8
<p>Time propagation of the precipitation recorded by stations (light blue) and that estimated by GPM (dark blue), for four selected cases dated 19 April 2014 (<b>a</b>); 04 January 2016 (<b>b</b>); 11 January 2016 (<b>c</b>); 22 December 2016 (<b>d</b>).</p> "> Figure 8 Cont.
<p>Time propagation of the precipitation recorded by stations (light blue) and that estimated by GPM (dark blue), for four selected cases dated 19 April 2014 (<b>a</b>); 04 January 2016 (<b>b</b>); 11 January 2016 (<b>c</b>); 22 December 2016 (<b>d</b>).</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Data
2.2.1. In-Situ Rain Gauge Data
2.2.2. IMERG Data
2.3. Statistical Scores
3. Results and Discussion
3.1. Monthly Validation
3.2. Daily Validation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.T.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J.; de Castro, M. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104–105, 70–97. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Navarro, A.; Levizzani, V.; García-Ortega, E.; Huffman, G.J.; Kidd, C.; Kucera, P.A.; Kummerow, C.D.; Masunaga, H.; Petersen, W.A.; et al. Global precipitation measurements for validating climate models. Atmos. Res. 2017, 197, 1–20. [Google Scholar] [CrossRef]
- Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J.E. Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res. 2009, 94, 512–533. [Google Scholar] [CrossRef]
- Michaelides, S.; Tymvios, F.S.; Michaelidou, T. Spatial and temporal characteristics of the annual rainfall frequency distribution in Cyprus. Atmos. Res. 2009, 94, 606–615. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef] [Green Version]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) Mission for Science and Society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and Other Precipitation Products against Gauge Data under Different Topographic and Climatic Conditions in Iran: Preliminary Results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef]
- Manz, B.; Páez-Bimos, S.; Horna, N.; Buytaert, W.; Ochoa-Tocachi, B.; Lavado-Casimiro, W.; Willems, B. Comparative Ground Validation of IMERG and TMPA at Variable Spatio temporal Scales in the Tropical Andes. J. Hydrometeor. 2017, 18, 2469–2489. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; AghaKouchak, A.; Liu, Z.; Norouzi, H.; Pai, D.S. A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol. 2018, 556, 865–876. [Google Scholar] [CrossRef]
- Sungmin, O.; Foelsche, U.; Kirchengast, G.; Fuchsberger, J.; Tan, J.; Petersen, W.A. Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci. 2017, 21, 6559–6572. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Duan, Z. Assessment of GPM and TRMM Precipitation Products over Singapore. Remote Sens. 2017, 9, 720. [Google Scholar] [CrossRef]
- Asong, Z.E.; Razavi, S.; Wheater, H.S.; Wong, J.S. Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over Southern Canada against ground Precipitation Observations: A Preliminary Assessment. J. Hydrometeor. 2017, 18, 1033–1050. [Google Scholar] [CrossRef]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Tian, F.; Hou, S.; Yang, L.; Hu, H.; Hou, A. How Does the Evaluation of the GPM IMERG Rainfall Product Depend on Gauge Density and Rainfall Intensity? J. Hydrometeor. 2018, 19, 339–349. [Google Scholar] [CrossRef]
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- Dezfuli, A.K.; Ichoku, C.M.; Huffman, G.J.; Mohr, K.I.; Selker, J.S.; van de Giesen, N.; Hochreutener, R.; Annor, F.O. Validation of IMERG Precipitation in Africa. J. Hydrometeor. 2017, 18, 2817–2825. [Google Scholar] [CrossRef]
- Liu, Z. Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) Monthly Precipitation Products: Initial Results. J. Hydrometeor. 2016, 17, 777–790. [Google Scholar] [CrossRef]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Retalis, A.; Katsanos, D.; Michaelides, S. Precipitation climatology over the Mediterranean Basin—Validation over Cyprus. Atmos. Res. 2016, 169, 449–458. [Google Scholar] [CrossRef]
- Katsanos, D.; Retalis, A.; Michaelides, S. Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period. Atmos. Res. 2016, 169, 459–464. [Google Scholar] [CrossRef]
- Katsanos, D.; Retalis, A.; Tymvios, F.; Michaelides, S. Analysis of precipitation extremes based on satellite (CHIRPS) and in-situ data set over Cyprus. Nat. Hazards 2016, 83, S53–S63. [Google Scholar] [CrossRef]
- Retalis, A.; Tymvios, F.; Katsanos, D.; Michaelides, S. Downscaling CHIRPS precipitation data: An artificial neural networks modelling approach. Int. J. Remote Sens. 2017, 38, 3943–3959. [Google Scholar] [CrossRef]
- Katsanos, D.; Retalis, A.; Tymvios, F.; Michaelides, S. Study of extreme wet and dry periods in Cyprus using climatic indices. Atmos. Res. 2018, 208, 88–93. [Google Scholar] [CrossRef]
- Michaelides, S.; Karacostas, T.; Sánchez, J.L.; Retalis, A.; Pytharoulis, I.; Homar, V.; Romero, R.; Zanis, P.; Giannakopoulos, C.; Bühl, J.; et al. Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmos. Res. 2018, 208, 4–44. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Stephenson, D.B. Forecast Verification: A Practitioner’s Guide in Atmospheric Science; John Wiley & Sons: Chichester, UK, 2003; p. 240. [Google Scholar]
- Tyralis, H.; Koutsoyiannis, D. On the prediction of persistent processes using the output of deterministic models. Hydrol. Sci. J. 2017, 62, 2083–2102. [Google Scholar] [CrossRef]
Gauges | ||||
---|---|---|---|---|
GPM IMERG | Yes | No | Total | |
Yes | Hits | False alarms | Forecast Yes | |
No | Misses | Correct negatives | Forecast No | |
Total | Observed Yes | Observed No | Total |
Class No. | Elevation (m) | Categorization | Number of Rain Gauges | Number of GPM Grid Cells |
---|---|---|---|---|
1 | 0–150 | Coastal | 42 | 26 |
2 | 150–300 | Inland plain | 18 | 14 |
3 | 300–500 | Hilly | 25 | 17 |
4 | 500–1000 | Semi Mountainous | 37 | 20 |
5 | >1000 | Mountainous | 14 | 7 |
RMSE (Cell) | MAE (Cell) | RMSE (Month) | MAE (Month) | |
---|---|---|---|---|
Average | 23.80 | 15.65 | 19.86 | 15.65 |
Minimum | 11.82 | 8.62 | 2.47 | 1.31 |
Maximum | 48.75 | 30.43 | 69.03 | 59.78 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Retalis, A.; Katsanos, D.; Tymvios, F.; Michaelides, S. Validation of the First Years of GPM Operation over Cyprus. Remote Sens. 2018, 10, 1520. https://doi.org/10.3390/rs10101520
Retalis A, Katsanos D, Tymvios F, Michaelides S. Validation of the First Years of GPM Operation over Cyprus. Remote Sensing. 2018; 10(10):1520. https://doi.org/10.3390/rs10101520
Chicago/Turabian StyleRetalis, Adrianos, Dimitris Katsanos, Filippos Tymvios, and Silas Michaelides. 2018. "Validation of the First Years of GPM Operation over Cyprus" Remote Sensing 10, no. 10: 1520. https://doi.org/10.3390/rs10101520
APA StyleRetalis, A., Katsanos, D., Tymvios, F., & Michaelides, S. (2018). Validation of the First Years of GPM Operation over Cyprus. Remote Sensing, 10(10), 1520. https://doi.org/10.3390/rs10101520