Mechanism for Higher Tolerance to and Lower Accumulation of Arsenite in NtCyc07-Overexpressing Tobacco
<p>As(III) tolerance and level in <span class="html-italic">NtCyc07</span>-expressing tobacco. (<b>a</b>) Comparison of morphology and As(III) tolerance in transgenic tobacco expressing <span class="html-italic">pBI121</span> only (control) and <span class="html-italic">NtCyc07</span> (NtCyc07-3 and NtCyc07-6) in response to As(III) stress. All plants were germinated and grown for 3 weeks on 1/2 Murashige and Skoog medium (MS) agar plates without (upper) and with (lower) 30 µM As(III). (<b>b</b>) Fresh weights of tobacco shown in (<b>a</b>). (<b>c</b>) As(III) tolerance rates of tobacco shown in (<b>a</b>,<b>b</b>). (<b>d</b>) As(III) accumulations in whole seedlings of control and <span class="html-italic">NtCyc07</span> tobacco shown in (<b>a</b>). 1/2 MS indicates a control (no As(III) treatment). Each value corresponds to the means of three independent experiments, and error bars indicate standard errors. Asterisks indicate significant differences between control and transgenic tobacco (<span class="html-italic">p</span> ≤ 0.05).</p> "> Figure 2
<p>Relative expression levels (in quantitative RT-PCR—qRT-PCR) of As(III) transporters in <span class="html-italic">NtCyc07</span>-tobacco. qRT-PCR analysis showing the expression levels of (<b>a</b>) <span class="html-italic">NtNIP1;1</span> (XP_016487110.1 ), (<b>b</b>) <span class="html-italic">NtNIP2;1</span> (XP_016451246.1), (<b>c</b>) <span class="html-italic">NtNIP3;1</span> (XP_016460638.1), (<b>d</b>) <span class="html-italic">NtNIP4;1</span> (XP_016486634.1), (<b>e</b>) <span class="html-italic">NtPIP1;1</span> (NP_001313131.1), (<b>f</b>) <span class="html-italic">NtPIP1;5</span> (AAB81601.1), (<b>g</b>) <span class="html-italic">NtPIP2;1</span> (AF440272.1), (<b>h</b>) <span class="html-italic">NtPIP2;2</span> (NM_001325404.1), (<b>i</b>) <span class="html-italic">NtPIP2;7</span> (NP_001313061.1), (<b>j</b>) <span class="html-italic">NtPIP2;17</span> (NP_001312464.1), (<b>k</b>) <span class="html-italic">NtXIP1;1α</span> (NP_001312796) and (<b>l</b>) <span class="html-italic">NtXIP2;1</span> (XP_016489264.1) in control (<span class="html-italic">pBI121</span>) and transgenic (<span class="html-italic">NtCyc07</span>) tobacco. Total RNA was isolated from tobacco seedlings grown for 3 weeks on 1/2 MS agar media supplemented without or with 30 µM sodium arsenite. 1/2 MS indicates a control (no As(III) treatment). The data are averages of three independent experiments per each treatment, and error bars indicate standard errors (S.E.). Different letters over columns indicate significant differences (<span class="html-italic">p</span> ≤ 0.05) between treatments.</p> "> Figure 2 Cont.
<p>Relative expression levels (in quantitative RT-PCR—qRT-PCR) of As(III) transporters in <span class="html-italic">NtCyc07</span>-tobacco. qRT-PCR analysis showing the expression levels of (<b>a</b>) <span class="html-italic">NtNIP1;1</span> (XP_016487110.1 ), (<b>b</b>) <span class="html-italic">NtNIP2;1</span> (XP_016451246.1), (<b>c</b>) <span class="html-italic">NtNIP3;1</span> (XP_016460638.1), (<b>d</b>) <span class="html-italic">NtNIP4;1</span> (XP_016486634.1), (<b>e</b>) <span class="html-italic">NtPIP1;1</span> (NP_001313131.1), (<b>f</b>) <span class="html-italic">NtPIP1;5</span> (AAB81601.1), (<b>g</b>) <span class="html-italic">NtPIP2;1</span> (AF440272.1), (<b>h</b>) <span class="html-italic">NtPIP2;2</span> (NM_001325404.1), (<b>i</b>) <span class="html-italic">NtPIP2;7</span> (NP_001313061.1), (<b>j</b>) <span class="html-italic">NtPIP2;17</span> (NP_001312464.1), (<b>k</b>) <span class="html-italic">NtXIP1;1α</span> (NP_001312796) and (<b>l</b>) <span class="html-italic">NtXIP2;1</span> (XP_016489264.1) in control (<span class="html-italic">pBI121</span>) and transgenic (<span class="html-italic">NtCyc07</span>) tobacco. Total RNA was isolated from tobacco seedlings grown for 3 weeks on 1/2 MS agar media supplemented without or with 30 µM sodium arsenite. 1/2 MS indicates a control (no As(III) treatment). The data are averages of three independent experiments per each treatment, and error bars indicate standard errors (S.E.). Different letters over columns indicate significant differences (<span class="html-italic">p</span> ≤ 0.05) between treatments.</p> "> Figure 3
<p>Oxidative stress levels of <span class="html-italic">NtCyc07</span>-overexpressing tobacco in response to As(III). Levels of (<b>a</b>) hydrogen peroxide, (<b>b</b>) superoxide, (<b>c</b>) malondialdehyde (MDA), (<b>d</b>) DAB (3,3-diaminobenzidine) staining for H<sub>2</sub>O<sub>2</sub> and (<b>e</b>) nitro blue tetrazolium (NBT) staining for superoxide in control (pBI121) and <span class="html-italic">NtCyc07</span>-tobacco. Plants were germinated and grown for 3 weeks on 1/2 MS agar media supplemented without or with 30 µM As(III). 1/2 MS indicates a control (no As(III) treatment). The data are averages of three independent experiments per each treatment, and error bars indicate standard errors (S.E.). Different letters over columns indicate significant differences (<span class="html-italic">p</span> ≤ 0.05) between treatments.</p> "> Figure 3 Cont.
<p>Oxidative stress levels of <span class="html-italic">NtCyc07</span>-overexpressing tobacco in response to As(III). Levels of (<b>a</b>) hydrogen peroxide, (<b>b</b>) superoxide, (<b>c</b>) malondialdehyde (MDA), (<b>d</b>) DAB (3,3-diaminobenzidine) staining for H<sub>2</sub>O<sub>2</sub> and (<b>e</b>) nitro blue tetrazolium (NBT) staining for superoxide in control (pBI121) and <span class="html-italic">NtCyc07</span>-tobacco. Plants were germinated and grown for 3 weeks on 1/2 MS agar media supplemented without or with 30 µM As(III). 1/2 MS indicates a control (no As(III) treatment). The data are averages of three independent experiments per each treatment, and error bars indicate standard errors (S.E.). Different letters over columns indicate significant differences (<span class="html-italic">p</span> ≤ 0.05) between treatments.</p> "> Figure 3 Cont.
<p>Oxidative stress levels of <span class="html-italic">NtCyc07</span>-overexpressing tobacco in response to As(III). Levels of (<b>a</b>) hydrogen peroxide, (<b>b</b>) superoxide, (<b>c</b>) malondialdehyde (MDA), (<b>d</b>) DAB (3,3-diaminobenzidine) staining for H<sub>2</sub>O<sub>2</sub> and (<b>e</b>) nitro blue tetrazolium (NBT) staining for superoxide in control (pBI121) and <span class="html-italic">NtCyc07</span>-tobacco. Plants were germinated and grown for 3 weeks on 1/2 MS agar media supplemented without or with 30 µM As(III). 1/2 MS indicates a control (no As(III) treatment). The data are averages of three independent experiments per each treatment, and error bars indicate standard errors (S.E.). Different letters over columns indicate significant differences (<span class="html-italic">p</span> ≤ 0.05) between treatments.</p> "> Figure 4
<p>Activities of antioxidant enzymes in response to As(III) in <span class="html-italic">NtCyc07</span>-expressing tobacco. Activities of (<b>a</b>) catalase, (<b>b</b>) superoxide dismutase and (<b>c</b>) glutathione reductase in control (pBI121) and <span class="html-italic">NtCyc07</span>-tobacco. Plants were germinated and grown for 3 weeks on 1/2 MS agar media without or with 30µM As(III). 1/2 MS indicates a control (no As(III) treatment). The data are averages of three independent experiments per each treatment, and error bars indicate standard errors (S.E.). Different letters over columns indicate significant differences (<span class="html-italic">p</span> ≤ 0.05) between treatments.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. NtCyc07-Overexpressing Tobacco Displayed Higher Tolerance to and Lower Accumulation of As(III)
2.2. Expressions of Putative As(III) Transporters Were Modulated in NtCyc07-Tobacco
2.3. NtCyc07-Expressing Tobacco Displayed a Lower Oxidative Stress and Higher Activities of Antioxidant Enzymes in Response to As(III)
3. Materials and Methods
3.1. Plants
3.2. As(III) Tolerance and Accumulation
3.3. Quantitative Real Time PCR (qRT-PCR)
3.4. Analysis of Antioxidant Enzyme Activity
3.4.1. Sample Preparation
3.4.2. Measurement of Antioxidant Enzyme Activity
3.5. Measurement of Oxidative Stress
3.6. Visualization of H2O2 and Superoxide (O2−)
3.7. Statistical Analysis
4. Conclusions
- The overexpression of NtCyc07 enhances As(III) tolerance by decreasing As(III) accumulation through the increased expression of putative As(III) exporter NIP1;1, PIP1;1, PIP1;5, PIP2;1, PIP2;2, and PIP2;7, and the reduced expression of putative As(III) importer NIP3;1, NIP4;1, and XIP2;1.
- NtCyc07-tobacco displays lower levels of oxidative stress and higher activities of antioxidant enzymes. The lower oxidative stress in NtCyc07-tobacco may be attributed to the higher activities of antioxidant enzymes and the lower level of As(III). The higher activities of antioxidant enzymes in NtCyc07-tobacco may be ascribed to the lower content of As(III) and probably the direct effect/function of NtCyc07.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vahidnia, A.; van der Voet, G.B.; de Wolff, F.A. Arsenic neurotoxicity—A review. Hum. Exp. Toxicol. 2007, 26, 823–832. [Google Scholar] [CrossRef]
- Naujokas, M.F.; Anderson, B.; Ahsan, H.; Aposhian, H.V.; Graziano, J.H.; Thompson, C.; Suk, W.A. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environ. Health Perspect. 2013, 121, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Ratnaike, R.N. Acute and chronic arsenic toxicity. Postgrad. Med. J. 2003, 79, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.P.; Goel, R.K.; Kaur, T. Mechanisms pertaining to arsenic toxicity. Toxicol. Int. 2011, 18, 87–93. [Google Scholar]
- Smith, A.H.; Hopenhayn-Rich, C.; Bates, M.N.; Goeden, H.M.; Hertz-Picciotto, I.; Duggan, H.M.; Wood, R.; Kosnett, M.J.; Smith, M.T. Cancer risks from arsenic in drinking water. Environ. Health Perspect. 1992, 97, 259–267. [Google Scholar] [CrossRef]
- Gebel, T.W. Genotoxicity of arsenical compounds. Int. J. Hyg. Environ. Health 2001, 203, 249–262. [Google Scholar] [CrossRef]
- Tseng, C.H.; Chong, C.K.; Tseng, C.P.; Hsueh, Y.M.; Chiou, H.Y.; Tseng, C.C.; Chen, C.J. Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan. Toxicol. Lett. 2003, 137, 15–21. [Google Scholar] [CrossRef]
- Chiou, H.Y.; Huang, W.I.; Su, C.L.; Chang, S.F.; Hsu, Y.H.; Chen, C.J. Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic. Stroke 1997, 28, 1717–1723. [Google Scholar] [CrossRef]
- Hendryx, M. Mortality from heart, respiratory, and kidney disease in coal mining areas of Appalachia. Int. Arch. Occup. Environ. Health 2009, 82, 243–249. [Google Scholar] [CrossRef]
- Kile, M.L.; Christiani, D.C. Environmental arsenic exposure and diabetes. JAMA 2008, 300, 845–846. [Google Scholar] [CrossRef] [Green Version]
- Bienert, G.P.; Thorsen, M.; Schussler, M.D.; Nilsson, H.R.; Wagner, A.; Tamas, M.J.; Jahn, T.P. A subgroup of plant aquaporins facilitate the bi-directional diffusion of as(oh)3 and sb(oh)3 across membranes. BMC Biol. 2008, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, N.; Hermans, C.; Schat, H. Mechanisms to cope with arsenic or cadmium excess in plants. Curr. Opin. Plant. Biol. 2009, 12, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Isayenkov, S.V.; Maathuis, F.J.M. The Arabidopsis thaliana aquaglyceroporin atnip7;1 is a pathway for arsenite uptake. Febs. Lett. 2008, 582, 1625–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurel, C. Plant aquaporins: Novel functions and regulation properties. Febs. Lett. 2007, 581, 2227–2236. [Google Scholar] [CrossRef]
- Uehlein, N.; Lovisolo, C.; Siefritz, F.; Kaldenhoff, R. The tobacco aquaporin ntaqp1 is a membrane co2 pore with physiological functions. Nature 2003, 425, 734–737. [Google Scholar] [CrossRef]
- Bienert, G.P.; Moller, A.L.B.; Kristiansen, K.A.; Schulz, A.; Moller, I.M.; Schjoerring, J.K.; Jahn, T.P. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 2007, 282, 1183–1192. [Google Scholar] [CrossRef] [Green Version]
- Bienert, G.P.; Schussler, M.D.; Jahn, T.P. Metalloids: Essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem. Sci. 2008, 33, 20–26. [Google Scholar] [CrossRef]
- Dynowski, M.; Mayer, M.; Moran, O.; Ludewig, U. Molecular determinants of ammonia and urea conductance in plant aquaporin homologs. FEBS Lett. 2008, 582, 2458–2462. [Google Scholar] [CrossRef] [Green Version]
- Maurel, C.; Verdoucq, L.; Luu, D.T.; Santoni, V. Plant aquaporins: Membrane channels with multiple integrated functions. Annu Rev. Plant. Biol. 2008, 59, 595–624. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Song, J.; Beitz, E. Novel channel enzyme fusion proteins confer arsenate resistance. J. Biol. Chem. 2010, 285, 40081–40087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.F.; Yamaji, N.; Mitani, N.; Xu, X.Y.; Su, Y.H.; McGrath, S.P.; Zhao, F.J. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. USA 2008, 105, 9931–9935. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, T.; Fujiwara, T. Arabidopsis nip1;1 transports antimonite and determines antimonite sensitivity. Plant Cell Physiol. 2009, 50, 1977–1981. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Q.; Mitani, N.; Yamaji, N.; Shen, R.F.; Ma, J.F. Involvement of silicon influx transporter osnip2;1 in selenite uptake in rice. Plant Physiol. 2010, 153, 1871–1877. [Google Scholar] [CrossRef] [Green Version]
- Katsuhara, M.; Sasano, S.; Horie, T.; Matsumoto, T.; Rhee, J.; Shibasaka, M. Functional and molecular characteristics of rice and barley nip aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnol. Nar. 2014, 31, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Dai, W.; Yan, H.; Li, S.; Shen, H.; Chen, Y.; Xu, H.; Sun, Y.; He, Z.; Ma, M. Arabidopsis nip3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol. Plant 2015, 8, 722–733. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Han, Y.H.; Cao, Y.; Zhu, Y.G.; Rathinasabapathi, B.; Ma, L.Q. Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front. Plant Sci. 2017, 8, 268. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, T.; Tanaka, M.; Mitani, N.; Ma, J.F.; Maeshima, M.; Fujiwara, T. Nip1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J. Biol. Chem. 2009, 284, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Sun, S.K.; Tang, Z.; Liu, G.D.; Moore, K.L.; Maathuis, F.J.M.; Miller, A.J.; McGrath, S.P.; Zhao, F.J. The nodulin 26-like intrinsic membrane protein osnip3;2 is involved in arsenite uptake by lateral roots in rice. J. Exp. Bot. 2017, 68, 3007–3016. [Google Scholar] [CrossRef] [Green Version]
- Mosa, K.A.; Kumar, K.; Chhikara, S.; Mcdermott, J.; Liu, Z.J.; Musante, C.; White, J.C.; Dhankher, O.P. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res. 2012, 21, 1265–1277. [Google Scholar] [CrossRef]
- Ahmed, J.; Mercx, S.; Boutry, M.; Chaumont, F. Evolutionary and predictive functional insights into the aquaporin gene family in the allotetraploid plant Nicotiana tabacum. Int. J. Mol. Sci. 2020, 21, 4743. [Google Scholar] [CrossRef]
- Kodama, H.; Ito, M.; Hattori, T.; Nakamura, K.; Komamine, A. Isolation of genes that are preferentially expressed at the g(1)/s boundary during the cell cycle in synchronized cultures of Catharanthus roseus cells. Plant Physiol. 1991, 95, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Ito, M.; Kodama, H.; Komamine, A. Identification of a novel s-phase-specific gene during the cell-cycle in synchronous cultures of Catharanthus roseus cells. Plant J. 1991, 1, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Mok, Y.G.; Lee, B.D.; Kim, Y.J.; Lee, C.E.; Kim, D.G.; Lee, J.; Shim, J.; Meng, Y.; Rosen, B.P.; Choi, J.S.; et al. The tobacco gene ntcyc07 confers arsenite tolerance in saccharomyces cerevisiae by reducing the steady state levels of intracellular arsenic. Febs. Lett. 2008, 582, 916–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.S.; Hwang, S. Cyc07 enhances arsenite tolerance by reducing as levels in Nicotiana tabacum and Arabidopsis thaliana. Plant Biotechnol. Rep. 2012, 6, 391–395. [Google Scholar] [CrossRef]
- Kim, Y.J.; Chang, K.S.; Lee, M.R.; Kim, J.H.; Lee, C.E.; Jeon, Y.J.; Choi, J.S.; Shin, H.S.; Hwang, S.B. Expression of tobacco cdna encoding phytochelatin synthase promotes tolerance to and accumulation of cd and as in saccharomyces cerevisiae. J. Plant. Biol. 2005, 48, 440–447. [Google Scholar] [CrossRef]
- Lee, B.D.; Hwang, S. Tobacco phytochelatin synthase (ntpcs1) plays important roles in cadmium and arsenic tolerance and in early plant development in tobacco. Plant Biotechnol. Rep. 2015, 9, 107–114. [Google Scholar] [CrossRef]
- Gasic, K.; Korban, S.S. Expression of Arabidopsis phytochelatin synthase in indian mustard (Brassica juncea) plants enhances tolerance for cd and zn. Planta 2007, 225, 1277–1285. [Google Scholar] [CrossRef]
- Gong, X.; Yin, L.W.; Chen, J.Q.; Guo, C.H. Overexpression of the iron transporter ntpic1 in tobacco mediates tolerance to cadmium. Plant Cell Rep. 2015, 34, 1963–1973. [Google Scholar] [CrossRef]
- Lee, B.R.; Hwang, S. Over-expression of nthb1 encoding a non-symbiotic class 1 hemoglobin of tobacco enhances a tolerance to cadmium by decreasing no (nitric oxide) and cd levels in Nicotiana tabacum. Environ. Exp. Bot. 2015, 113, 18–27. [Google Scholar] [CrossRef]
- Bahmani, R.; Kim, D.; Na, J.; Hwang, S. Expression of the tobacco non-symbiotic class 1 hemoglobin gene hb1 reduces cadmium levels by modulating cd transporter expression through decreasing nitric oxide and ros level in Arabidopsis. Front. Plant Sci. 2019, 10, 201. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.H.; Li, Y.; Wu, X.Y.; Zhou, L.; Zhu, X.J.; Fang, W.P. Metal transport protein 8 in camellia sinensis confers superior manganese tolerance when expressed in yeast and Arabidopsis thaliana. Sci. Rep. UK 2017, 7, 39915. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, R.; Kim, D.; Lee, B.D.; Hwang, S. Over-expression of tobacco ubc1 encoding a ubiquitin-conjugating enzyme increases cadmium tolerance by activating the 20s/26s proteasome and by decreasing cd accumulation and oxidative stress in tobacco (Nicotiana tabacum). Plant Mol. Biol. 2017, 94, 433–451. [Google Scholar] [CrossRef]
- Sheng, Y.; Yan, X.; Huang, Y.; Han, Y.; Zhang, C.; Ren, Y.; Fan, T.; Xiao, F.; Liu, Y.; Cao, S. The WRKY transcription factor, WRKY13, activates pdr8 expression to positively regulate cadmium tolerance in Arabidopsis. Plant Cell Environ. 2019, 42, 891–903. [Google Scholar] [CrossRef]
- Qiao, K.; Wang, F.; Liang, S.; Wang, H.; Hu, Z.; Chai, T. Improved cd, Zn and Mn tolerance and reduced cd accumulation in grains with wheat-based cell number regulator tacnr2. Sci. Rep. 2019, 9, 870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahmani, R.; Modareszadeh, M.; Kim, D.; Hwang, S. Overexpression of tobacco ubq2 increases cd tolerance by decreasing cd accumulation and oxidative stress in tobacco and Arabidopsis. Environ. Exp. Bot. 2019, 166, 103805. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, H.; Jiang, H.L.; Wang, H.S.; Chen, K.X.; Duan, J.J.; Feng, S.J.; Wu, G. Regulation of cadmium tolerance and accumulation by mir156 in Arabidopsis. Chemosphere 2020, 242, 125168. [Google Scholar] [CrossRef]
- Mishra, S.; Jha, A.B.; Dubey, R.S. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 2011, 248, 565–577. [Google Scholar] [CrossRef]
- Singh, I.; Shah, K. Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice seedlings. Phytochemistry 2014, 108, 57–66. [Google Scholar] [CrossRef]
- Mostofa, M.G.; Hossain, M.A.; Fujita, M.; Tran, L.S.P. Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci. Rep. UK 2015, 5, 11433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmud, J.A.; Hasanuzzaman, M.; Nahar, K.; Rahman, A.; Hossain, M.S.; Fujita, M. Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. Ecotoxicol. Environ. Saf. 2017, 144, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Bahmani, R.; Ko, J.H.; Hwang, S. Development of bisphenol a (bpa)-sensing indicator arabidopsis thaliana which synthesizes anthocyanin in response to bpa in leaves. Ecotox. Environ. Safe. 2019, 170, 627–634. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time rt-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Beyer, W.F., Jr.; Fridovich, I. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef]
- Smith, I.K.; Vierheller, T.L.; Thorne, C.A. Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis(2-nitrobenzoic acid). Anal. Biochem. 1988, 175, 408–413. [Google Scholar] [CrossRef]
- Lei, Y.B.; Yin, C.Y.; Li, C.Y. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol. Plant. 2006, 127, 182–191. [Google Scholar] [CrossRef]
- Loreto, F.; Velikova, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 2001, 127, 1781–1787. [Google Scholar] [CrossRef]
- Lv, W.T.; Lin, B.; Zhang, M.; Hua, X.J. Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Amino Acids 2011, 41, S69. [Google Scholar] [CrossRef] [Green Version]
- Fryer, M.J.; Oxborough, K.; Mullineaux, P.M.; Baker, N.R. Imaging of photo-oxidative stress responses in leaves. J. Exp. Bot. 2002, 53, 1249–1254. [Google Scholar]
- Rao, M.V.; Davis, K.R. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: The role of salicylic acid. Plant J. 1999, 17, 603–614. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Bahmani, R.; Modareszadeh, M.; Hwang, S. Mechanism for Higher Tolerance to and Lower Accumulation of Arsenite in NtCyc07-Overexpressing Tobacco. Plants 2020, 9, 1480. https://doi.org/10.3390/plants9111480
Kim D, Bahmani R, Modareszadeh M, Hwang S. Mechanism for Higher Tolerance to and Lower Accumulation of Arsenite in NtCyc07-Overexpressing Tobacco. Plants. 2020; 9(11):1480. https://doi.org/10.3390/plants9111480
Chicago/Turabian StyleKim, DongGwan, Ramin Bahmani, Mahsa Modareszadeh, and Seongbin Hwang. 2020. "Mechanism for Higher Tolerance to and Lower Accumulation of Arsenite in NtCyc07-Overexpressing Tobacco" Plants 9, no. 11: 1480. https://doi.org/10.3390/plants9111480
APA StyleKim, D., Bahmani, R., Modareszadeh, M., & Hwang, S. (2020). Mechanism for Higher Tolerance to and Lower Accumulation of Arsenite in NtCyc07-Overexpressing Tobacco. Plants, 9(11), 1480. https://doi.org/10.3390/plants9111480