Abstract
Ubiquitin (Ub)-conjugating enzyme (UBC, E2) receives Ub from Ub-activating enzyme (E1) and transfers it to target proteins, thereby playing a key role in Ub/26S proteasome-dependent proteolysis. UBC has been reported to be involved in tolerating abiotic stress in plants, including drought, salt, osmotic and water stresses. To isolate the genes involved in Cd tolerance, we transformed WT (wild-type) yeast Y800 with a tobacco cDNA expression library and isolated a tobacco cDNA, NtUBC1 (Ub-conjugating enzyme), that enhances cadmium tolerance. When NtUBC1 was over-expressed in tobacco, cadmium tolerance was enhanced, but the Cd level was decreased. Interestingly, 20S proteasome activity was increased and ubiquitinated protein levels were diminished in response to cadmium in NtUBC1 tobacco. By contrast, proteasome activity was decreased and ubiquitinated protein levels were slightly enhanced by Cd treatment in control tobacco, which is sensitive to Cd. Moreover, the oxidative stress level was induced to a lesser extent by Cd in NtUBC1 tobacco compared with control plants, which is ascribed to the higher activity of antioxidant enzymes in NtUBC1 tobacco. In addition, NtUBC1 tobacco displayed a reduced accumulation of Cd compared with the control, likely due to the higher expression of CAX3 (Ca2+/H+ exchanger) and the lower expression of IRT1 (iron-responsive transporter 1) and HMA-A and -B (heavy metal ATPase). In contrast, atubc1 and atubc1atubc2 Arabidopsis exhibited lower Cd tolerance and proteasome activity than WT. In conclusion, NtUBC1 expression promotes cadmium tolerance likely by removing cadmium-damaged proteins via Ub/26S proteasome-dependent proteolysis or the Ub-independent 20S proteasome and by diminishing oxidative stress through the activation of antioxidant enzymes and decreasing Cd accumulation due to higher CAX3 and lower IRT1 and HMA-A/B expression in response to 50 µM Cd challenge for 3 weeks.
Similar content being viewed by others
References
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126
Bachmair A, Novatchkova M, Potuschak T, Eisenhaber F (2001) Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends Plant Sci 6:463–470. doi:10.1016/S1360-1385(01)02080-5
Basset G, Raymond P, Malek L, Brouquisse R (2002) Changes in the expression and the enzymic properties of the 20S proteasome in sugar-starved maize roots. evidence for an in vivo oxidation of the proteasome. Plant Physiol 128:1149–1162. doi:10.1104/pp.010612
Besson-Bard A et al (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315. doi:10.1104/pp.108.133348
Beyer WF, Fridovich I (1987) Assaying for superoxide-dismutase activity—some large consequences of minor changes in conditions. Anal Biochem 161:559–566. doi:10.1016/0003-2697(87)90489-1
Bhati KK et al. (2015) Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat. Front Plant Sci 6:488. doi:10.3389/fpls.2015.00488
Brunetti P et al (2015) Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J Exp Bot 66:3815–3829. doi:10.1093/jxb/erv185
Chaoui A, Mazhoudi S, Ghorbal MH, ElFerjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L). Plant Sci 127:139–147. doi:10.1016/S0168-9452(97)00115-5
Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120. doi:10.1016/j.plantsci.2004.07.021
Chung E, Cho CW, So HA, Kang JS, Chung YS, Lee JH (2013) Overexpression of VrUBC1, a mung bean E2 ubiquitin-conjugating enzyme, enhances osmotic stress tolerance in Arabidopsis. PLoS ONE 8:e66056. doi:10.1371/journal.pone.0066056
Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357. doi:10.1105/tpc.001263
Cui F et al (2012) Arabidopsis ubiquitin conjugase UBC32 Is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell 24:233–244. doi:10.1105/tpc.111.093062
Djebali W et al (2008) Modifications in endopeptidase and 20 S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants. Planta 227:625–639. doi:10.1007/s00425-007-0644-6
Dorlhac De Borne F, Hermand V, Julio E (2012) Tobacco with reduced cadmium content.
Du ZY, Chen MX, Chen QF, Gu JD, Chye ML (2015) Expression of Arabidopsis acyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb(II) accumulation in Brassica juncea roots. Plant Cell Environ 38:101–117. doi:10.1111/pce.12382
Feussner K, Feussner I, Leopold I, Wasternack C (1997) Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBC1 of tomato—the first stress-induced UBC of higher plants. FEBS Lett 409:211–215. doi:10.1016/S0014-5793(97)00509-7
Figueiredo-Pereira ME, Cohen G (1999) The ubiquitin/proteasome pathway: friend or foe in zinc-, cadmium-, and H2O2-induced neuronal oxidative stress. Mol Biol Rep 26:65–69. doi:10.1023/A:1006909918866
Forzani C, Lobreaux S, Mari S, Briat JF, Lebrun M (2002) Metal resistance in yeast mediated by the expression of a maize 20S proteasome alpha subunit Gene 293:199–204. doi:10.1016/S0378-1119(02)00758-8
Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53:1249–1254. doi:10.1093/jexbot/53.372.1249
Gallego SM, Benavides MP, Tomaro ML (1999) Effect of cadmium ions on antioxidant defense system in sunflower cotyledons. Biol Plant 42:49–55. doi:10.1023/A:1002159123727
Goller SP, Gorfer M, Kubicek CP (1998) Trichoderma reesei prs12 encodes a stress- and unfolded-protein response inducible regulatory subunit of the fungal 26S proteasome. Curr Genet 33:284–290 doi:10.1007/s002940050338
Hawrylak-Nowak B, Dresler S, Matraszek R (2015) Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants. Plant Physiol Biochem 94:225–234. doi:10.1016/j.plaphy.2015.06.012
He JL et al (2013) A transcriptomic network underlies microstructural and physiological responses to cadmium in populus x canescens(1[C][W]). Plant Physiol 162:424–439. doi:10.1104/pp.113.215681
He JL et al (2015) Overexpression of bacterial gamma-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar. New Phytol 205:240–254. doi:10.1111/nph.13013
Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133
Horsch RB, Klee HJ, Stachel S, Winans SC, Nester EW, Rogers SG, Fraley RT (1986) Analysis of Agrobacterium-Tumefaciens virulence mutants in leaf-disks. Proc Natl Acad Sci USA 83:2571–2575. doi:10.1073/pnas.83.8.2571
Hussain D et al (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339 doi:10.1105/Tpc.020487
Jungmann J, Reins HA, Schobert C, Jentsch S (1993) Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361:369–371. doi:10.1038/361369a0
Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218. doi:10.1111/j.1365-313X.2007.03044.x
Kirkpatrick DS, Dale KV, Catania JM, Gandolfi AJ (2003) Low-level arsenite causes accumulation of ubiquitinated proteins in rabbit renal cortical slices and HEK293 cells. Toxicol Appl Pharmacol 186:101–109. doi:10.1016/S0041-008x(02)00019-4
Korenkov V, Hirschi K, Crutchfield JD, Wagner GJ (2007) Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta 226:1379–1387. doi:10.1007/s00425-007-0577-0
Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408–416. doi:10.1111/j.1365-3040.2009.01935.x
Lee BD, Hwang S (2015a) Overexpression of NtUBQ2 encoding Ub-extension protein enhances cadmium tolerance by activating 20 S and 26 S proteasome in tobacco (Nicotiana tabacum). Acta Physiol Plant 37:1–8. doi:10.1007/s11738-015-1774-2
Lee BR, Hwang S (2015b) Over-expression of NtHb1 encoding a non-symbiotic class 1 hemoglobin of tobacco enhances a tolerance to cadmium by decreasing NO (nitric oxide) and Cd levels in Nicotiana tabacum. Environ Exp Bot 113:18–27. doi:10.1016/j.envexpbot.2015.01.003
Lei YB, Yin CY, Li CY (2006) Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant 127:182–191. doi:10.1111/j.1399-3054.2006.0063.x
Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787. doi:10.1104/Pp.010497
Luo BF, Du ST, Lu KX, Liu WJ, Lin XY, Jin CW (2012) Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. J Exp Bot 63:3127–3136. doi:10.1093/jxb/ers036
Lv WT, Lin B, Zhang M, Hua XJ (2011) Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiol 156:1921–1933. doi:10.1104/pp.111.175810
Mills RF, Krijger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of AtHMA4, a P-1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35:164–176. doi:10.1046/j.1365-313X.2003.01790.x
Molins H et al (2013) Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity in Arabidopsis thaliana. Plant Cell Environ 36:804–817. doi:10.1111/pce.12016
Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904. doi:10.1104/pp.108.130294
Muradoglu F, Gundogdu M, Ercisli S, Encu T, Balta F, Jaafar HZE, Zia-Ul-Haq M (2015) Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry Biol Res 48:11. doi:10.1186/s40659-015-0001-3
Park J et al (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288. doi:10.1111/j.1365-313X.2011.04789.x
Pena LB, Pasquini LA, Tomaro ML, Gallego SM (2006) Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Sci 171:531–537. doi:10.1016/j.plantsci.2006.06.003
Pena LB, Pasquini LA, Tomaro ML, Gallego SM (2007) 20 S proteasome and accumulation of oxidized and ubiquitinated proteins in maize leaves subjected to cadmium stress. Phytochemistry 68:1139–1146. doi:10.1016/j.phytochem.2007.02.022
Polge C, Jaquinod M, Holzer F, Bourguignon J, Walling L, Brouquisse R (2009) Evidence for the existence in Arabidopsis thaliana of the proteasome proteolytic pathway activation in response to cadmium. J Biol Chem 284:35412–35424. doi:10.1074/jbc.M109.035394
Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134
Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614 doi:10.1046/j.1365-313X.1999.00400.x
Romero-Puertas MC, Rodriguez-Serrano M, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O-2(.-) and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134. doi:10.1111/j.1365-3040.2004.01217.x
RossMacdonald P, Sheehan A, Roeder GS, Snyder M (1997) A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:190–195. doi:10.1073/pnas.94.1.190
Sarry JE et al (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198. doi:10.1002/pmic.200500543
Sano T, Yoshihara T, Handa K, Sato MH, Nagata T, Hasezawa S (2012) Metal ion homeostasis mediated by NRAMP transporters in plant cells-focused on increased resistance to iron and cadmium ion. Crosstalk Integr Membr Traffick Pathw edRWeigert (InTech):213–228
Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167. doi:10.1105/tpc.112.096925
Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898. doi:10.1104/Pp.010318
Shen GM, Du QZ, Wang JX (2012) Involvement of plasma membrane Ca2+/H+ antiporter in Cd2+ tolerance. Rice Sci 19:161–165
Smalle J, Vierstra RD (2004) The ubiquitin 26 S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590. doi:10.1146/annurev.arplant.55.031903.141801
Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione-reductase in crude tissue-homogenates using 5,5′-Dithiobis(2-Nitrobenzoic Acid). Anal Biochem 175:408–413. doi:10.1016/0003-2697(88)90564-7
Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35:1948–1957. doi:10.1111/j.1365-3040.2012.02527.x
Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996
Tsirigotis M, Zhang M, Chiu RK, Wouters BG, Gray DA (2001) Sensitivity of mammalian cells expressing mutant ubiquitin to protein-damaging agents. J Biol Chem 276:46073–46078. doi:10.1074/jbc.M109023200
Ueno D et al (2011) Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J 66:852–862. doi:10.1111/j.1365-313X.2011.04548.x
Verret F et al. (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312. doi:10.1016/j.febslet.2004.09.023
Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233. doi:10.1105/tpc.001388
Vido K, Spector D, Lagniel G, Lopez S, Toledano MB, Labarre J (2001) A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J Biol Chem 276:8469–8474. doi:10.1074/jbc.M008708200
Wan XR, Mo AQ, Liu SA, Yang LX, Li L (2011) Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress-responsive gene expression. J Biosci Bioeng 111:478–484. doi:10.1016/j.jbiosc.2010.11.021
Wang L et al (2014) Hydrogen peroxide acts upstream of nitric oxide in the heat shock pathway in Arabidopsis Seedlings1[C][W]. Plant Physiol 164:2184–2196. doi:10.1104/pp.113.229369
Wu Q, Shigaki T, Williams KA, Han JS, Kim CK, Hirschi KD, Park S (2011) Expression of an Arabidopsis Ca2+/H + antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. J Plant Physiol 168:167–173. doi:10.1016/j.jplph.2010.06.005
Xu L, Menard R, Berr A, Fuchs J, Cognat V, Meyer D, Shen WH (2009) The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. Plant J 57:279–288. doi:10.1111/j.1365-313X.2008.03684.x
Yoshihara T, Hodoshima H, Miyano Y, Shoji K, Shimada H, Goto F (2006) Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Rep 25:365–373. doi:10.1007/s00299-005-0092-3
Yuan LY, Yang SG, Liu BX, Zhang M, Wu KQ (2012) Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep 31:67–79. doi:10.1007/s00299-011-1140-9
Zhou GA, Chang RZ, Qiu LJ (2010) Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant Mol Biol 72:357–367. doi:10.1007/s11103-009-9575-x
Acknowledgements
We appreciate Dr. Wen-Hui Shen (Institut de Biologie Mole´culaire des Plantes (IBMP), Strasbourg Cedex, France) for supplying the seeds of ubc1ubc2 ko Arabidopsis.
Funding
This work was supported by the Bio-industry Technology Development Program funded by the Ministry for Food, Agriculture, Forestry and Fisheries [312033-5] and the Civil research projects for solving social problems through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning [NRF-2015M3C8A6A06014500], Korea.
Author contributions
S.H. designed and supervised whole research, and wrote the article with contributions of all the authors; R.B. and D.K. equally performed most of the experiments; B.L. performed an initial experiment.
Author information
Authors and Affiliations
Corresponding author
Additional information
Ramin Bahmani and DongGwan Kim have contributed equally to this work.
Accession numbers: Sequence data from this article can be found in the NCBI (http://www.ncbi.nlm.nih.gov) data libraries under the following accession numbers: U60495 (NtActin), EB428626 (NtCAX3), HF675181 (NtHMA-A), HF937054 (NtHMA-B), AB263746 (NtIRT1), AB201240 (NtMTP1a), AB201241 (NtMTP1b), AB505625 (NtNRAMP1), AB505626 (NtZIP1), AB026055.1 (NtUBC1).
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Bahmani, R., Kim, D., Lee, B.D. et al. Over-expression of tobacco UBC1 encoding a ubiquitin-conjugating enzyme increases cadmium tolerance by activating the 20S/26S proteasome and by decreasing Cd accumulation and oxidative stress in tobacco (Nicotiana tabacum). Plant Mol Biol 94, 433–451 (2017). https://doi.org/10.1007/s11103-017-0616-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11103-017-0616-6