[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Tobacco phytochelatin synthase (NtPCS1) plays important roles in cadmium and arsenic tolerance and in early plant development in tobacco

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Phytochelatin synthase (PCS) catalyzes the synthesis of phytochelatins, which are involved in heavy metal detoxification in plants and other living organisms. Previously, we cloned a PCS1 gene from tobacco (Nicotiana tabacum) and showed that its expression in yeast (Saccharomyces cerevisiae) resulted in increased cadmium (Cd) tolerance and Cd accumulation (Kim et al., J Plant Biol 48:440–447, 2005). To examine the role of NtPCS1 in tobacco, we generated transgenic tobacco lines over-expressing NtPCS1 in the sense or antisense direction. Compared with other PCS1-expressing plants, NtPCS1-expressing tobacco exhibited a unique phenotype: increased tolerance to cadmium and arsenite, but no change in cadmium and arsenic accumulation. In addition, the antisense-NtPCS1 tobacco lines showed growth retardation in the early stage, suggesting that phytochelatin also plays a role in plant development. These results demonstrate that NtPCS1 plays important roles in metal(loid) tolerance as well as in growth and development in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brunetti P, Zanella L, Proia A, Paolis AD, Falasca G, Altamura MM, di Toppi LS, Costantino P, Cardarelli M (2011) Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1. J Exp Bot 62:5509–5519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Zhou J, Goldsbrough PB (1997) Characterization of phytochelatin synthase from tomato. Physiol Plant 101:165–172

    Article  CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    Article  CAS  PubMed  Google Scholar 

  • Gisbert C, Ros R, Haro A, Walker DJ, Bernal MP (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    Article  CAS  PubMed  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal binding peptides from plants, are functionally analogous to metallothioneins. Proc Nat Acad Sci USA 84:439–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Klee HJ, Stachel S, Winans SC, Nester EW (1986) Analysis of Agrobacterium tumefaciens virulence mutants in leaf discs. Proc Nat Acad Sci USA 83:2571–2575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Howden R, Goldsbrough PB, Anderson CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim YJ, Chang KS, Lee MR, Kim JH, Lee CE, Jeon YJ, Choi JS, Shin HS, Hwang S (2005) Expression of tobacco cDNA encoding phytochelatin synthase promotes tolerance to and accumulation of Cd and As in Saccharomyces cerevisiae. J Plant Biol 48:440–447

    Article  CAS  Google Scholar 

  • Kim YJ, Kim JH, Lee CE, Mok YG, Choi JS, Shin HS, Hwang S (2006) Expression of yeast transcriptional activator MSN1 promotes accumulation of chromium and sulfur by enhancing sulfate transporter level in plants. FEBS Lett 580:206–210

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Hwang S (2012) Cyc07 enhances arsenite tolerance by reducing As levels in Nicotiana tabacum and Arabidopsis thaliana. Plant Biotechnol Reports 6:391–395

    Article  Google Scholar 

  • Lee S, Moon JS, Ko T-S, Petros D, Goldsbrough PB (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797

    Article  CAS  PubMed  Google Scholar 

  • Liu G-Y, Zhang Y-X, Chai T-Y (2011) Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco. Plant Cell Report 30:1067–1076

    Article  CAS  Google Scholar 

  • Liu Z, Gu C, Chen F, Yang D, Wu K, Chen S, Jiang J, Zhang Z (2012) Heterologous expression of a Nelumbo nucifera phytochelatin synthase gene enhances cadmium tolerance in Arabidopsis thaliana. Appl Biochem Biotechnol 166:722–734

    Article  CAS  PubMed  Google Scholar 

  • Maitani T, Kubati H, Sato K, Yamada T (1996) The composition of metal bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145–1150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mok YG, Lee BD, Lee CE, Kim DG, Meng Y, Rosen BP, Choi JS, Shin HS, Hwang S (2008) Tobacco gene Ntcyc07 confers arsenite tolerance by reducing As levels in S. cerevisiae. FEBS Lett 582:916–924

    Article  CAS  PubMed  Google Scholar 

  • Pomponi M, Censi V, Girolamo VD, Paolis AD, Toppi LS, Aromolo R, Costantino P, Cardarelli (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    Article  CAS  PubMed  Google Scholar 

  • Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmöger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    Article  PubMed Central  PubMed  Google Scholar 

  • Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P, Trivedi PK (2012) Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep 31:1687–1699

    Article  CAS  PubMed  Google Scholar 

  • Shukla D, Kesari R, Tiwari M, Dwivedi S, Tripathi RD, Nath P, Trivedi PK (2013) Expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in E. coli and Arabidopsis enhances heavy metal(loid)s accumulation. Protoplasma 250:1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu Y-P, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Nat Acad Sci USA 96:7110–7115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vogeli-Lange R, Wagner GJ, Dziadkowiec D (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides. Plant Physiol 109:945–954

    Google Scholar 

  • Wang F, Wang Z, Zhu C (2012) Heteroexpression of the wheat phytochelatin synthase gene (TaPCS1) in rice enhances cadmium sensitivity. Acta Biochim Biophys Sinica 44:886–893

    Article  CAS  Google Scholar 

  • Wawrzynski A, Kopera E, Wawrzynski A, Kaminska J, Bal W, Sirko A (2006) Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J Exp Bot 57:2173–2182

    Article  CAS  PubMed  Google Scholar 

  • Wojas S, Clemens S, Sklodowska A, Antosiewicz DM (2010a) Arsenic response of AtPCS1- and CePCS-expressing plants- Effects of external As(V) concentration on As-accumulation pattern and NPT metabolism. J Plant Physiol 167:169–175

    Article  CAS  PubMed  Google Scholar 

  • Wojas S, Ruszcznska A, Bulska E, Clemens S, Antosiewicz DM (2010b) The role of subcellular distribution of cadmium and phytochelatins in the generation of distinct phenotypes of AtPCS1- and CePCS3-expressing tobacco. J Plant Physiol 167:981–988

    Article  PubMed  Google Scholar 

  • Wysocki R, Clemens S, Augustyniak D, Golik P, Maciaszczyk E, Tamas MJ, Dziadkowiec D (2003) Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p. Biochem Biophys Res Commun 304:293–300

    Article  CAS  PubMed  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, and the Bio-industry Technology Development Program funded by the Ministry for Food, Agriculture, Forestry and Fisheries, KOREA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seongbin Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B.D., Hwang, S. Tobacco phytochelatin synthase (NtPCS1) plays important roles in cadmium and arsenic tolerance and in early plant development in tobacco. Plant Biotechnol Rep 9, 107–114 (2015). https://doi.org/10.1007/s11816-015-0348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-015-0348-5

Keywords

Navigation