Response of Pedunculate Oak (Quercus robur L.) to Adverse Environmental Conditions in Genetic and Dendrochronological Studies
Abstract
:1. Introduction
2. Nuclear Genome of Q. robur
3. Chloroplast Genome of Q. robur
4. Mitochondrial Genome of Q. robur
5. Genetic Variation and Population Structure of Q. robur
Introgressive Hybridization
6. Epigenetic Variation of Q. robur
7. Transcriptome and Gene Expression of Q. robur
8. Phenotypic Variation and Plasticity of Q. robur
9. Phenology of Q. robur
10. Phylogenetics and Phylogeography of Q. robur
11. Response of Q. robur to Environmental Factors in Dendroecological and Dendrochronological Studies
11.1. Drought
11.2. Waterlogging
11.3. Geographic Origin and Cultures, and Provenance Tests
11.4. Climate Change, Temperature, and Precipitation
11.5. Climate Response in Archaeological, Dendrochronological, and Genetic Studies
12. Factors of Resilience to Environmental Factors in Oaks and Their Longevity
13. Plus Trees and Main Breeding Traits of Q. robur
- -
- trees-phenomena;
- -
- trees-veterans;
- -
- record-breaking best in technical and economic terms and at the same time highly viable;
- -
- fast-growing;
- -
- straight-trunked;
- -
- knot-free;
- -
- possessing the best wood qualities;
- -
- undamaged by rot, harmful insects, frost and other factors.
14. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bellusci, G.; Braglia, R.; Di Marco, G.; Redi, E.; Canini, A.; Gismondi, A. Assessing molecular diversity among 87 species of the Quercus L. genus by RAPD markers. Genet. Resour. Crop Evol. 2023, 70, 2683–2694. [Google Scholar] [CrossRef]
- Eaton, E.; Caudullo, G.; Oliveira, S.; de Rigo, D. Quercus robur and Quercus petraea in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the EU: Luxembourg, 2016; pp. 160–163. Available online: https://ies-ows.jrc.ec.europa.eu/efdac/download/Atlas/pdf/Quercus_robur_petraea.pdf (accessed on 15 October 2024).
- Mölder, A.; Meyer, P.; Nagel, R.-V. Integrative management to sustain biodiversity and ecological continuity in Central European temperate oak (Quercus robur, Q. petraea) Forests: An Overview. For. Ecol. Manag. 2019, 437, 324–339. [Google Scholar] [CrossRef]
- Mitchell, R.; Bellamy, P.; Ellis, C.; Hewison, R.; Hodgetts, N.; Iason, G.; Littlewood, N.; Newey, S.; Stockan, J.; Taylor, A. OakEcol: A database of Oak-associated biodiversity within the UK. Data Brief 2019, 25, 104120. [Google Scholar] [CrossRef]
- Johnson, P.S.; Shifley, S.R.; Rogers, R. The Ecology and Silviculture of Oaks, 2nd ed.; CABI Publishing: New York, NY, USA, 2009; 580p, ISBN 10-1845934741. [Google Scholar]
- Cañellas, I.; Sánchez-González, M.; Bogino, S.M.; Adame, P.; Moreno-Fernández, D.; Herrero, C.; Roig, S.; Tomé, M.; Paulo, J.A.; Bravo, F. Carbon sequestration in Mediterranean oak forests. In Managing Forest Ecosystems: The Challenge of Climate Change; Bravo, F., LeMay, V., Jandl, R., Eds.; Springer: Cham, Switzerland, 2017; Volume 34, pp. 403–427. [Google Scholar] [CrossRef]
- Balaganesh, B.; Murali, S.; Sinduja, D.K. Chapter 15—Carbon sequestration potential of oak tree. In Compendium of Agriculture and Allied Sciences, 1st ed.; Balamurugan, V., Arunkumar, R., Vignesh, K., Suthin Raj, T., Eds.; JPS Scientific Publications: Tamil Nadu, India, 2022; Volume 3, pp. 215–220. ISBN 978-93-91342-83-8. [Google Scholar]
- Norby, R.J.; Loader, N.J.; Mayoral, C.; Ullah, S.; Curioni, G.; Smith, A.R.; Reay, M.K.; Van Wijngaarden, K.; Amjad, M.S.; Brettle, D.; et al. Enhanced woody biomass production in a mature temperate forest under elevated CO2. Nat. Clim. Chang. 2024, 14, 983–988. [Google Scholar] [CrossRef]
- Kovács, B.; Tinya, F.; Németh, C.; Ódor, P. Unfolding the effects of different forestry treatments on microclimate in oak forests: Results of a 4-yr experiment. Ecol. Appl. 2020, 30, e02043. [Google Scholar] [CrossRef]
- Kovács, B.; Németh, C.; Aszalós, R.; Veres, K. Small oases below the canopy: The cooling effects of water-filled tree holes on the local microclimate in oak-dominated stands. Agric. For. Meteorol. 2024, 353, 110058. [Google Scholar] [CrossRef]
- Verheyen, K.; Gillerot, L.; Blondeel, H.; De Frenne, P.; De Pauw, K.; Depauw, L.; Lorer, E.; Sanczuk, P.; Schreel, J.; Vanneste, T.; et al. Forest canopies as nature-based solutions to mitigate global change effects on people and nature. J. Ecol. 2024, 112, 2451–2461. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-Erosion and Runoff Prevention by Plant Covers: A Review. In Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherland, 2009; pp. 785–811. [Google Scholar] [CrossRef]
- Rodrigues, A.R.; Botequim, B.; Tavares, C.; Pécurto, P.; Borges, J.G. Addressing soil protection concerns in forest ecosystem management under climate change. For. Ecosyst. 2020, 7, 34. [Google Scholar] [CrossRef]
- The Technical Properties of Oak Wood. Available online: https://hugokaempf.de/en/advisor/the-technical-properties-of-oak-wood (accessed on 3 December 2024).
- Santos, J.A.; Carvalho, J.P.F.; Santos, J. Chapter 4—Oak Wood. In Oak: Ecology, Types and Management; Chuteira, C.A., Grão, A.B., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2012; pp. 119–150. ISBN 978-1-61942-492-0. [Google Scholar]
- Muñoz, G.R.; Gete, A.R. Relationships between mechanical properties of oak timber (Q. robur L.). Holzforschung 2011, 65, 749–755. [Google Scholar] [CrossRef]
- Jordão, A.M.; Cosme, F. The Application of Wood Species in Enology: Chemical Wood Composition and Effect on Wine Quality. Appl. Sci. 2022, 12, 3179. [Google Scholar] [CrossRef]
- Pencák, T.; Dordevic, D.; Tremlová, B. Utilization of Oak (genus) tree parts in food industry: A review. Maso Int.—J. Food Sci. Technol. 2024, 13, 25–30. [Google Scholar] [CrossRef]
- Richard, B.; Bénard, A.; Dumarçay, S.; Colin, F. Wood, knots and bark extractives for oak, beech and Douglas fir: A dataset based on a review of the scientific literature. Ann. For. Sci. 2024, 81, 9. [Google Scholar] [CrossRef]
- Tomczak, K.; Mania, P.; Cukor, J.; Vacek, Z.; Komorowicz, M.; Tomczak, A. Wood Quality of Pendulate Oak on Post-Agricultural Land: A Case Study Based on Physico-Mechanical and Anatomical Properties. Forests 2024, 15, 1394. [Google Scholar] [CrossRef]
- Meyer, L.; Brischke, C.; Melcher, E.; Brandt, K.; Lenz, M.T.; Soetbeer, A. Durability of English oak (Quercus robur L.)–Comparison of decay progress and resistance under various laboratory and field conditions. Int. Biodeterior. Biodegrad. 2014, 86, 79–85. [Google Scholar] [CrossRef]
- Mills, A. The British Oak; Constable & Robinson Ltd.: London, UK, 2013; 304p. [Google Scholar]
- Acton, J. Oaklore: Adventures in a World of Extraordinary Trees; Greystone Books Ltd.: Vancouver, BC, Canada, 2024; 234p. [Google Scholar]
- Francis, R.; Dufraisse, A. Firewood and timber collection and management strategies from early medieval sites in eastern England. Initial results from the anthraco-typological analysis of oak charcoal remains. Quat. Int. 2021, 593–594, 320–331. [Google Scholar] [CrossRef]
- Malico, I.; Gonçalves, A.C.; Sousa, A.M.O. Evergreen oak biomass residues for firewood. In Forest Biomass—From Trees to Energy; Chapter 3; Gonçalves, A.C., Sousa, A., Malico, I., Eds.; IntechOpen Inc.: London, UK, 2021; pp. 87–103. ISBN 978-1-83962-970-9. [Google Scholar] [CrossRef]
- Jamali, S.; Haack, R. From Glory to Decline: Uncovering Causes of Oak Decline in Iran. For. Pathol. 2024, 54, e12898. [Google Scholar] [CrossRef]
- Bhatia, N.; Friedman, A.; Del Rosso, J. Applications of Topical Oak Bark Extract in Dermatology: Clinical Examples and Discussion. J. Drugs Dermatol. 2019, 18, 203–206. [Google Scholar]
- Şöhretoğlu, D.; Renda, G. The polyphenolic profile of Oak (Quercus) species: A phytochemical and pharmacological overview. Phytochem. Rev. 2020, 19, 1379–1426. [Google Scholar] [CrossRef]
- Häsler Gunnarsdottir, S.; Sommerauer, L.; Schnabel, T.; Oostingh, G.J.; Schuster, A. Antioxidative and Antimicrobial Evaluation of Bark Extracts from Common European Trees in Light of Dermal Applications. Antibiotics 2023, 12, 130. [Google Scholar] [CrossRef]
- Logan, W.B. Oak: The Frame of Civilization; W.W. Norton & Company: New York, NY, USA, 2006; 336p. [Google Scholar]
- Leroy, T.; Plomion, C.; Kremer, A. Oak Symbolism in the Light of Genomics. New Phytol. 2020, 226, 1012–1017. [Google Scholar] [CrossRef]
- Elam, K. Romancing the Oak: On the Performativity of Trees in Shakespearean Comedy. In Fascinating Rhythms, 1st ed.; Routledge: London, UK, 2022; pp. 97–118. [Google Scholar] [CrossRef]
- Sabouri, S.; Javadi, S. Oak; A Heritage, a Culture. J. Art Civiliz. Orient 2022, 10, 25–34. [Google Scholar] [CrossRef]
- Oosterbaan, A.; Leffef, F. Decline in health and death of Quercus robur L. in the Netherlands. Nederlands-Bosbouwtijdschrift 1987, 59, 186–192. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19870618722 (accessed on 15 October 2024). (In Dutch with English Abstract).
- Thomas, F.M.; Blank, R.; Hartmann, G. Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. For. Pathol. 2002, 32, 277–307. [Google Scholar] [CrossRef]
- Neagu, S. Long-term growth decline of Quercus robur L. forests in Vlăsia Plain. Proc. Rom. Acad. Ser. B Chem. Life Sci. Geosci. 2010, 3, 255–259. Available online: https://acad.ro/sectii2002/proceedingsChemistry/doc2010-3/art10Neagu.pdf (accessed on 15 October 2024).
- Lione, G.G.; Ebone, A.; Petrella, F.; Terzuolo, P.; Nicolotti, G.; Gonthier, P. Decline of Quercus Robur Forests in Northwestern Italy: Current Situation and Tentative Aetiology. IOBC/Wprs Bull. 2012, 76, 67–70. Available online: http://hdl.handle.net/2318/109969 (accessed on 15 October 2024).
- Matisons, R.; Elferts, D.; Brūmelis, G. Possible signs of growth decline of pedunculate oak in Latvia during 1980–2009 in treering width and vessel size. Bal. For. 2013, 19, 137–142. [Google Scholar]
- Keča, N.; Koufakis, I.; Dietershagen, J.; Nowakowska, J.A.; Oszako, T. European Oak Decline Phenomenon in Relation to Climatic Changes. Folia For. Pol. Ser. A 2016, 58, 170–177. [Google Scholar] [CrossRef]
- Conte, A.L.; Di Pietro, R.; Iamonico, D.; Di Marzio, P.; Cillis, G.; Lucia, D.; Fortini, P. Oak decline in the Mediterranean Basin: A Study Case from the Southern Apennines (Italy). Plant Sociol. 2019, 56, 69–80. [Google Scholar] [CrossRef]
- Losseau, J.; Jonard, M.; Vincke, C. Pedunculate oak decline in southern Belgium: A long-term process highlighting the complex interplay among drought, winter frost, biotic attacks, and masting. Can. J. For. Res. 2020, 50, 380–389. [Google Scholar] [CrossRef]
- Schroeder, H.; Nosenko, T.; Ghirardo, A.; Fladung, M.; Schnitzler, J.P.; Kersten, B. Oaks as Beacons of Hope for Threatened Mixed Forests in Central Europe. Front. For. Glob. Chang. 2021, 4, 670797. [Google Scholar] [CrossRef]
- Macháčová, M.; Nakládal, O.; Samek, M.; Baťa, D.; Zumr, V.; Pešková, V. Oak Decline Caused by Biotic and Abiotic Factors in Central Europe: A Case Study from the Czech Republic. Forests 2022, 13, 1223. [Google Scholar] [CrossRef]
- Kowsari, M.; Karimi, E. A review on oak decline: The global situation causative factors and new research approaches. For. Syst. 2023, 32, eR01. [Google Scholar] [CrossRef]
- Gribbe, S.; Enderle, L.; Weigel, R.; Hertel, D.; Leuschner, C.; Muffler, L. Recent growth decline and shifts in climatic growth constraints suggest climate vulnerability of beech, Douglas fir, pine and oak in Northern Germany. For. Ecol. Manag. 2024, 566, 122022. [Google Scholar] [CrossRef]
- Krutovsky, K.V. Dendrogenomics Is a New Interdisciplinary Field of Research of the Adaptive Genetic Potential of Forest Tree Populations Integrating Dendrochronology, Dendroecology, Dendroclimatology, and Genomics. Russ. J. Genet. 2022, 58, 1273–1286. [Google Scholar] [CrossRef]
- Gailing, O.; Hipp, A.L.; Plomion, C.; Carlson, J.E. Oak Population Genomics. In Population Genomics: Forest Trees; Rajora, O.P., Ed.; Springer: Cham, Switzerland, 2021; pp. 1–37. [Google Scholar] [CrossRef]
- Gadella, T.W.J.; Kliphuis, E. Chromosome numbers of flowering plants in the Netherlands. VI. Meded. Het Bot. Mus. Herb. Rijksuniv. Utrecht 1973, 392, 303–311. [Google Scholar]
- Butorina, A.K. Cytogenetic study of diploid and spontaneous triploid oaks, Quercus robur L. Ann. For. Sci. 1993, 50, 144–150. [Google Scholar] [CrossRef]
- Naujoks, G.; Hertel, H.; Ewald, D. Characterisation and propagation of an adult triploid pedunculate oak (Quercus robur). Silvae Genet. 1995, 44, 282–286. Available online: https://literatur.thuenen.de/digbib_extern/dn055203.pdf (accessed on 15 October 2024).
- Dzialuk, A.; Chybicki, I.; Welc, M.; Sliwinska, E.; Burczyk, J. Presence of Triploids among Oak Species. Ann. Bot. 2007, 99, 959–964. [Google Scholar] [CrossRef]
- Zoldoš, V.; Besendorfer, V.; Jelenić, S.; Lorković, Z.; Littvay, T.; Papeš, D. Cytogenetic damages as an indicator of pedunculate oak forest decline. In Proceedings of the First IUFRO Cytogenetics Working Party S2.04-08 Symposium Cytogenetic Studies of Forest Trees and Shrub Species, Fažana, Croatia, 8–11 September 1993; Borzan, Ž., Schlarbaum, S.E., Eds.; Hrvatske šume: Šumarski Fakultet, University of Zagreb: Zagreb, Croatia, 1997; pp. 275–284. [Google Scholar]
- Zoldos, V.; Papes, D.; Brown, S.; Panaud, O.; Siljak-Yakovlev, S. Genome size and base composition of seven Quercus species: Inter- and intra-population variation. Genome 1998, 41, 162–168. [Google Scholar] [CrossRef]
- Mehra, P.N.; Hans, A.S.; Sareen, T.S. Cytomorphology of Himalayan Fagaceae. Silvae Genet. 1972, 21, 102–109. [Google Scholar]
- D’emerico, S.; Bianco, P.; Medagli, P.; Schirone, B. Karyotype analysis in Quercus spp. (Fagaceae). Silvae Genet. 1995, 44, 66–70. [Google Scholar]
- Ohri, D.; Ahuja, M.R. Giemsa C-banding in Quercus L. (oak). Silvae Genet. 1990, 39, 216–219. [Google Scholar]
- Ohri, D.; Ahuja, M.R. Giemsa C-banding in Fagus sylvatica L., Betula pendula Roth, and Populus tremula L. Silvae Genet. 1991, 40, 72–74. [Google Scholar]
- Wang, L.-m. A taxonomy study of the deciduous Oak in China by means of cluster and karyotype analysis. Bull. Bot. Res. 1986, 6, 55–69. Available online: https://bbr.nefu.edu.cn/EN/Y1986/V6/I1/55 (accessed on 15 October 2024).
- Cao, R.B.; Chen, R.; Liao, K.X.; Li, H.; Xu, G.B.; Jiang, X.L. Karyotype and LTR-RTs analysis provide insights into oak genomic evolution. BMC Genom. 2024, 25, 328. [Google Scholar] [CrossRef]
- Natividade, J.V. Recherches cytologiques sur quelque especes et hybrides du genre Quercus (I). Bol. Sociedate Broteriana 1937, 12, 21–85, (In Portuguese with English Abstract). [Google Scholar]
- Leitch, I.J.; Johnston, E.; Pellicer, J.; Hidalgo, O.; Bennett, M.D. Angiosperm DNA C-Values Database (Release 9.0, April 2019). 2019. Available online: https://cvalues.science.kew.org/search/angiosperm (accessed on 13 October 2024).
- Favre, J.M.; Brown, S. A flow cytometric evaluation of the nuclear DNA content and GC percent in genomes of European oak species. Ann. Sci. For. 1996, 53, 915–917. [Google Scholar] [CrossRef]
- Kremer, A.; Casasoli, M.; Barreneche, T.; Bodénès, C.; Sisco, P.; Kubisiak, T.; Scalfi, M.; Leonardi, S.; Bakker, E.; Buiteveld, J.; et al. Fagaceae Trees. In Genome Mapping and Molecular Breeding in Plants; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 7, pp. 161–187. [Google Scholar]
- Schwarz, O. Quercus L. In Flora Europaea. Lycopodiaceae Platanaceae 1964, 1, 61–64. [Google Scholar]
- Camus, A. Les chênes, Monographie du genre Quercus et Monographie du genre Lithocarpus. In Encyclopédie Economique de Sylviculture; Lechevalier: Paris, France, 1938; Volume VI–VIII, pp. 1936–1954. [Google Scholar]
- Manos, P.S.; Steele, K.P. Phylogenetic analyses of “higher” Hamamelidiae based on plastid sequence data. Am. J. Bot. 1997, 84, 1407–1419. [Google Scholar] [CrossRef]
- Xu, L.A. Diversité de l’ADN Chloroplastique et Relations Phylogénétiques au Sein des Fagacées et du Genre Quercus. Ph.D. Thesis, Université Henri Poincaré, Nancy, France, 2004; 129p. (In French with English Abstract). [Google Scholar]
- Barreneche, T.; Bodénès, C.; Lexer, C.; Trontin, J.F.; Fluch, S.; Streiff, R.; Plomion, C.; Roussel, G.; Steinkellner, H.; Burg, K.; et al. A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theor. Appl. Genet. 1998, 97, 1090–1103. [Google Scholar] [CrossRef]
- Barreneche, T.; Casasoli, M.; Russell, K.; Akkak, A.; Meddour, H.; Plomion, C.; Villani, F.; Kremer, A. Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs). Theor. Appl. Genet. 2004, 108, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Gailing, O. QTL analysis of leaf morphological characters in a Quercus robur full-sib family (Q. robur × Q. robur ssp. slavonica). Plant Biol. 2008, 10, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Gailing, O.; Langenfeld-Heyser, R.; Polle, A.; Finkeldey, R. Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: Implications for the adaptation to changing environments. Glob. Chang. Biol. 2008, 14, 1934–1946. [Google Scholar] [CrossRef]
- Bodénès, C.; Chancerel, E.; Gailing, O.; Vendramin, G.G.; Bagnoli, F.; Durand, J.; Goicoechea, P.G.; Soliani, C.; Villani, F.; Mattioni, C.; et al. Comparative mapping in the Fagaceae and beyond with EST-SSRs. BMC Plant Biol. 2012, 12, 153. [Google Scholar] [CrossRef]
- Bodénès, C.; Chancerel, E.; Ehrenmann, F.; Kremer, A.; Plomion, C. High-density linkage mapping and distribution of segregation distortion regions in the oak genome. DNA Res. 2016, 23, 115–124. [Google Scholar] [CrossRef]
- Quercus PORTAL. A European Genetic and Genomic Web Resources for Quercus: Oak Mapping Initiatives. Available online: https://quercusportal.pierroton.inra.fr/index.php?p=GENETIC_MAPPING (accessed on 13 October 2024).
- Lepoittevin, C.; Bodénès, C.; Chancerel, E.; Villate, L.; Lang, T.; Lesur, I.; Boury, C.; Ehrenmann, F.; Zelenica, D.; Boland, A.; et al. Single-nucleotide polymorphism discovery and validation in high-density SNP array for genetic analysis in European white oaks. Mol. Ecol. Resour. 2015, 15, 1446–1459. [Google Scholar] [CrossRef]
- Endelman, J.; Plomion, C. LPmerge: An R package for merging genetic maps by linear programming. BioInformatics 2014, 30, 1623–1624. [Google Scholar] [CrossRef]
- Plomion, C.; Aury, J.M.; Amselem, J.; Alaeitabar, T.; Barbe, V.; Belser, C.; Bergès, H.; Bodénès, C.; Boudet, N.; Boury, C.; et al. Decoding the oak genome: Public release of sequence data, assembly, annotation and publication strategies. Mol. Ecol. Resour. 2016, 16, 254–265. [Google Scholar] [CrossRef]
- Plomion, C.; Aury, J.; Amselem, J.; Leroy, T.; Murat, F.; Duplessis, S.; Faye, S.; Francillonne, N.; Labadie, K.; Provost, G.L.; et al. Oak genome reveals facets of long lifespan. Nat. Plants 2018, 4, 440–452. [Google Scholar] [CrossRef]
- Oak Genome Browser. Available online: https://urgi.versailles.inra.fr/WebApollo_oak_PM1N/PseudoMolecule.html (accessed on 14 October 2024).
- Dumolin, S.; Demesure, B.; Petit, R.J. Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoret. Appl. Genet. 1995, 91, 1253–1256. [Google Scholar] [CrossRef]
- Semerikova, S.A.; Isakov, I.Y.; Semerikov, V.L. Chloroplast DNA Variation and Phylogeography of Pedunculate Oak Quercus robur L. in the Eastern Part of the Range. Russ. J. Genet. 2021, 57, 47–60. [Google Scholar] [CrossRef]
- Ducousso, A.; Bordacs, S. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Pedunulate and Sessile Oaks (Quercus robur and Q. petraea); International Plant Genetic Resources Institute: Rome, Italy, 2004; 6p, Available online: https://www.euforgen.org/fileadmin/templates/euforgen.org/upload/Publications/Technical_guidelines/Technical_guidelines_Quercus_robur-petraea.pdf (accessed on 15 October 2024).
- Cottrell, J.E.; Munro, R.C.; Tabbener, H.E.; Gillies, A.C.M.; Forrest, G.I.; Deans, J.D.; Lowe, A.J. Distribution of chloroplast variation in British oaks (Quercus robur and Q. petraea): The influence of postglacial recolonization and human management. For. Ecol. Manag. 2002, 156, 181–195. [Google Scholar] [CrossRef]
- Petit, R.J.; Kremer, A.; Wagner, D.B. Geographic structure of chloroplast DNA polymorphisms in European oaks. Theor. Appl. Genet. 1993, 87, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Petit, R.J.; Vendramin, G.G. Plant phylogeography based on organelle genes: An introduction. In Phylogeography of Southern European Refugia; Weiss, S., Ferrand, N., Eds.; Springer: Dordrecht, The Netherland, 2007; pp. 23–97. [Google Scholar] [CrossRef]
- Petit, R.J.; Brewer, S.; Bordács, S.; Burg, K.; Cheddadi, R.; Coart, E.; Coart, E.; Cottrell, J.; Csaikl, U.M.; van Damh, B.; et al. Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For. Ecol. Manag. 2002, 156, 49–74. [Google Scholar] [CrossRef]
- Petit, R.J.; Csaikl, U.M.; Bordacs, S.; Burg, K.; Coart, E.; Cottrell, J.; van Dam, B.; Deans, J.D.; Dumolin-Lapègue, S.; Fineschi, S.; et al. Chloroplast DNA variation in European white oaks—Phylogeography and patterns of diversity based on data from over 2600 populations. For. Ecol. Manag. 2002, 156, 5–26. [Google Scholar] [CrossRef]
- Blanc-Jolivet, C.; Liesebach, M. Tracing the origin and species identity of Quercus robur and Quercus petraea in Europe: A review. Silvae Genet. 2015, 64, 182–193. [Google Scholar] [CrossRef]
- Lazic, D.; Hipp, A.L.; Carlson, J.E.; Gailing, O. Use of Genomic Resources to Assess Adaptive Divergence and Introgression in Oaks. Forests 2021, 12, 690. [Google Scholar] [CrossRef]
- Gailing, O.; Wachter, H.; Heyder, J.; Rogge, M.; Finkeldey, R. Chloroplast DNA analyses of very old, presumably autochthonous Quercus robur L. stands in North Rhine-Westphalia. Allg. Forst-u. Jagdztg. 2009, 180, 221–227. [Google Scholar]
- Bi, Q.; Li, D.; Zhao, Y.; Wang, M.; Li, Y.; Liu, X.; Wang, L.; Yu, H. Complete mitochondrial genome of Quercus variabilis (Fagales, Fagaceae). Mitochondrial DNA B Resour. 2019, 4, 3927–3928. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.-L.; Chen, L.; Zhang, R.-G.; Zhao, S.-W.; Yan, H.; Gao, J.; Chen, X.; Si, Y.-J.; Chen, Z.; et al. Telomere-to-telomere and haplotype-resolved genome assembly of the Chinese cork oak (Quercus variabilis). Front. Plant Sci. 2023, 14, 1290913. [Google Scholar] [CrossRef]
- Liu, D.; Guo, H.; Zhu, J.; Qu, K.; Chen, Y.; Guo, Y.; Ding, P.; Yang, H.; Xu, T.; Jing, Q.; et al. Complex Physical Structure of Complete Mitochondrial Genome of Quercus acutissima (Fagaceae): A Significant Energy Plant. Genes 2022, 13, 1321. [Google Scholar] [CrossRef] [PubMed]
- Usié, A.; Serra, O.; Barros, P.M.; Barbosa, P.; Leão, C.; Capote, T.; Almeida, T.; Rodrigues, L.; Carrasquinho, I.; Guimarães, J.B.; et al. An improved reference genome and first organelle genomes of Quercus suber. Tree Genet. Genomes 2023, 19, 54. [Google Scholar] [CrossRef]
- Grosser, M.R.; Sites, S.K.; Murata, M.M.; Lopez, Y.; Chamusco, K.C.; Love Harriage, K.; Grosser, J.W.; Graham, J.H.; Gmitter, F.; Chase, C.D. Plant mitochondrial introns as genetic markers-conservation and variation. Front. Plant Sci. 2023, 14, 1116851. [Google Scholar] [CrossRef]
- Mosca, E.; Cruz, F.; Gómez-Garrido, J.; Bianco, L.; Rellstab, C.; Brodbeck, S.; Csilléry, K.; Fady, B.; Fladung, M.; Fussi, B.; et al. A reference genome sequence for the European silver fir (Abies alba Mill.): A community-generated genomic resource. G3 Genes Genomes Genet. 2019, 9, 2039–2049. [Google Scholar] [CrossRef]
- Putintseva, Y.A.; Bondar, E.I.; Simonov, E.P.; Sharov, V.V.; Oreshkova, N.V.; Kuzmin, D.A.; Konstantinov, Y.M.; Shmakov, V.N.; Belkov, V.I.; Sadovsky, M.G.; et al. Siberian larch (Larix sibirica Ledeb.) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome. BMC Genom. 2020, 21, 654. [Google Scholar] [CrossRef]
- Feng, L.; Wang, Z.; Wang, C.; Yang, X.; An, M.; Yin, Y. Multichromosomal mitochondrial genome of Punica granatum: Comparative evolutionary analysis and gene transformation from chloroplast genomes. BMC Plant Biol. 2023, 23, 512. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, G.; He, K.; Xu, K.; Liu, W.; Wang, Y.; Wang, Z.; Liu, S.; Bi, C. Assembly and Comparative Analysis of the Complete Mitochondrial Genome of Ilex rotunda Thunb. Forests 2024, 15, 1117. [Google Scholar] [CrossRef]
- Wu, C.S.; Wang, R.J.; Chaw, S.M. Integration of large and diverse angiosperm DNA fragments into Asian Gnetum mitogenomes. BMC Biol. 2024, 22, 140. [Google Scholar] [CrossRef]
- Mullagulov, R.Y.; Redkina, N.N.; Yanbaev, Y.A. Allozyme variability of pedunculate oak Quercus robur L. (Fagaceae) in isolated populations on the eastern border of the range. Bull. Orenbg. State Univ. 2008, 2, 107–110. (In Russian). Available online: http://vestnik.osu.ru/2008_2/17.pdf (accessed on 15 October 2024). (In Russian).
- Popović, M.; Katičić Bogdan, I.; Varga, F.; Šatović, Z.; Bogdan, S.; Ivanković, M. Genetic Diversity in Peripheral Pedunculate Oak (Quercus robur L.) Provenances—Potential Climate Change Mitigators in the Center of Distribution despite Challenges in Natural Populations. Forests 2023, 14, 2290. [Google Scholar] [CrossRef]
- Semerikova, S.A.; Tashev, A.N.; Semerikov, V.L. Genetic Diversity and History of Pedunculate Oak Quercus robur L. in the East of the Range. Russ. J. Ecol. 2023, 54, 423–438. [Google Scholar] [CrossRef]
- Degen, B.; Yanbaev, Y.; Ianbaev, R.; Blanc-Jolivet, C.; Mader, M.; Bakhtina, S. Large-scale genetic structure of Quercus robur in its eastern distribution range enables assignment of unknown seed sources. Forestry 2022, 95, 531–547. [Google Scholar] [CrossRef]
- Gömöry, D.; Yakovlev, I.; Zhelev, P.; Jedináková, J.; Paule, L. Geneticd ifferentiation of oak populations within the Quercus robur/Quercus petraea complex in Central and Eastern Europe. Heredity 2001, 86, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Degen, B.; Yanbaev, Y.; Mader, M.; Ianbaev, R.; Bakhtina, S.; Schroeder, H.; Blanc-Jolivet, C. Impact of Gene Flow and Introgression on the Range Wide Genetic Structure of Quercus robur (L.) in Europe. Forests 2021, 12, 1425. [Google Scholar] [CrossRef]
- Yakovlev, I.A.; Kleinschmidt, J. Genetic differentiation of pedunculate oak Quercus robur L. in the European part of Russia based on RAPD markers. Russ. J. Genet. 2002, 38, 148–155. [Google Scholar] [CrossRef]
- Gabitova, A.A.; Yanbaev, R.Y.; Redkina, N.N. High genetic polymorphism in a population of the English oak in the lowlands of Western Ural’s macro-slope. Vestn. Bashk. Univ. Ser. Biol. 2015, 20, 854–856, (In Russian with English Abstract). [Google Scholar]
- Chokheli, V.; Kagan, D.I.; Varduny, T.V.; Kozlovsky, B.; Sereda, M.; Kapralova, O.A.; Dmitriev, P.; Padutov, V.E. Ecological and genetic differentiation of populations of Quercus robur L. in the Rostov Region with the use of ISSR-markers. Turczaninowia 2018, 21, 161–167. [Google Scholar] [CrossRef]
- Ballian, D.; Belletti, P.; Ferrazzini, D.; Bogunić, F.; Kajba, D. Genetic variability of pedunculate oak (Quercus robur L.) in Bosnia and Herzegovina. Period. Biol. 2010, 112, 353–362. Available online: https://hrcak.srce.hr/58180 (accessed on 15 October 2024).
- Degen, B.; Yanbaev, Y.; Ianbaev, R.; Bakhtina, S.; Tagirova, A. Genetic diversity and differentiation among populations of the pedunculate oak (Quercus robur) at the eastern margin of its range based on a new set of 95 SNP loci. J. For. Res. 2021, 32, 2237–2243. [Google Scholar] [CrossRef]
- Avanzi, C.; Bagnoli, F.; Romiti, E.; Spanu, I.; Tsuda, Y.; Vajana, E.; Vendramin, G.G.; Piotti, A. The latitudinal trend in genetic diversity and distinctiveness of Quercus robur rear edge forest remnants calls for new conservation priorities. bioRxiv, 2023; advance online publication. [Google Scholar] [CrossRef]
- Di Pietro, R.; Quaranta, L.; Mattioni, C.; Simeone, M.C.; Di Marzio, P.; Proietti, E.; Fortini, P. Chloroplast Haplotype Diversity in the White Oak Populations of the Italian Peninsula, Sicily, and Sardinia. Forests 2024, 15, 864. [Google Scholar] [CrossRef]
- Neophytou, C.; Aravanopoulos, F.A.; Fink, S.; Dounavi, A. Detecting interspecific and geographic differentiation patterns in two interfertile oak species (Quercus petraea (Matt.) Liebl. and Q. robur L.) using small sets of microsatellite markers. For. Ecol. Manag. 2010, 259, 2026–2035. [Google Scholar] [CrossRef]
- Milesi, P.; Kastally, C.; Dauphin, B.; Cervantes, S.; Bagnoli, F.; Budde, K.B.; Cavers, S.; Fady, B.; Faivre-Rampant, P.; González-Martínez, S.C.; et al. Resilience of genetic diversity in forest trees over the Quaternary. Nat. Commun. 2024, 15, 8538. [Google Scholar] [CrossRef] [PubMed]
- Kremer, A.; Delcamp, A.; Lesur, I.; Wagner, S.; Rellstab, C.; Guichoux, E.; Leroy, T. Whole-genome screening for near-diagnostic genetic markers for four western European white oak species identification. Ann. For. Sci. 2024, 81, 21. [Google Scholar] [CrossRef]
- Jurkšienė, G.; Baranov, O.Y.; Kagan, D.I.; Kovalevič-Razumova, O.A.; Baliuckas, V. Genetic diversity and differentiation of pedunculate (Quercus robur) and sessile (Q. petraea) oaks. J. For. Res. 2020, 31, 2445–2452. [Google Scholar] [CrossRef]
- Leroy, T.; Louvet, J.-M.; Lalanne, C.; Le Provost, G.; Labadie, K.; Aury, J.-M.; Delzon, S.; Plomion, C.; Kremer, A. Adaptive introgression as a driver of local adaptation to climate in European white oaks. New Phytol. 2020, 226, 1171–1182. [Google Scholar] [CrossRef]
- Leroy, T.; Rougemont, Q.; Dupouey, J.-L.; Bodénès, C.; Lalanne, C.; Belser, C.; Labadie, K.; Le Provost, G.; Aury, J.-M.; Kremer, A.; et al. Massive postglacial gene flow between European white oaks uncovered genes underlying species barriers. New Phytol. 2020, 226, 1183–1197. [Google Scholar] [CrossRef]
- Cannon, C.H.; Petit, R.J. The oak syngameon: More than the sum of its parts. New Phytol. 2020, 226, 978–983. [Google Scholar] [CrossRef]
- Karunarathne, P.; Zhou, Q.; Lascoux, M.; Milesi, P. Hybridization mediated range expansion and climate change resilience in two keystone tree species of boreal forests. Glob. Chang. Biol. 2024, 30, e17262. [Google Scholar] [CrossRef]
- Zhou, Q.; Karunarathne, P.; Andersson-Li, L.; Chen, C.; Opgenoorth, L.; Heer, K.; Piotti, A.; Vendramin, G.G.; Nakvasina, E.; Lascoux, M.; et al. Recurrent hybridization and gene flow shaped Norway and Siberian spruce evolutionary history over multiple glacial cycles. Mol. Ecol. 2024, 33, e17495. [Google Scholar] [CrossRef]
- Leroy, T.; Roux, C.; Villate, L.; Bodénès, C.; Romiguier, J.; Paiva, J.A.P.; Dossat, C.; Aury, J.-M.; Plomion, C.; Kremer, A. Extensive recent secondary contacts between four European white oak species. New Phytol. 2017, 214, 865–878. [Google Scholar] [CrossRef]
- Fu, R.; Zhu, Y.; Liu, Y.; Feng, Y.; Lu, R.; Li, Y.; Li, P.; Kremer, A.; Lascoux, M.; Chen, J. Genome-wide analyses of introgression between two sympatric Asian oak species. Nat. Ecol. Evol. 2022, 6, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Correia, B.; Valledor, L.; Meijón, M.; Rodriguez, J.L.; Dias, M.C.; Santos, C.; Cañal, M.J.; Rodriguez, R.; Pinto, G. Is the interplay between epigenetic markers related to the acclimation of cork oak plants to high temperatures? PLoS ONE 2013, 8, e53543. [Google Scholar] [CrossRef] [PubMed]
- Sork, V.L.; Browne, L.; Fitz-Gibbon, S.; Pellegrini, M. Potential Role of Epigenetic Processes in Oak Populations. Int. Oaks 2019, 30, 177–184. Available online: https://www.internationaloaksociety.org/content/potential-role-epigenetic-processes-oak-populations (accessed on 15 October 2024).
- Escandón, M.; Castillejo, M.Á.; Jorrín-Novo, J.V.; Rey, M.-D. Molecular Research on Stress Responses in Quercus spp.: From Classical Biochemistry to Systems Biology through Omics Analysis. Forests 2021, 12, 364. [Google Scholar] [CrossRef]
- Silva, H.G.; Sobral, R.S.; Magalhães, A.P.; Morais-Cecílio, L.; Costa, M.M.R. Genome-Wide Identification of Epigenetic Regulators in Quercus suber L. Int. J. Mol. Sci. 2020, 21, 3783. [Google Scholar] [CrossRef]
- Labella-Ortega, M. Genetic and Epigenetic Bases of Quercus ilex Variability. Ph.D. Thesis, Universidad de Córdoba, Andalusia, Spain, 2024. Available online: http://hdl.handle.net/10396/28495 (accessed on 15 October 2024).
- Lesur, I.; Rogier, O.; Sow, M.D.; Boury, C.; Duplan, A.; Garnier, A.; Senhaji-Rachik, A.; Civan, P.; Daron, J.; Delaunay, A.; et al. A strategy for studying epigenetic diversity in natural populations: Proof of concept in poplar and oak. J. Exp. Bot. 2024, 75, 5568–5584. [Google Scholar] [CrossRef]
- Gugger, P.F.; Fitz-Gibbon, S.T.; Pellegrini, M.; Sork, V.L. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol. Ecol. 2016, 25, 1665–1680. [Google Scholar] [CrossRef]
- Platt, A.; Gugger, P.F.; Pellegrini, M.; Sork, V.L. Genome-wide signature of local adaptation linked to variable CpG methylation in oak populations. Mol. Ecol. 2015, 24, 3823–3830. [Google Scholar] [CrossRef]
- Fuchs, J.; Jovtchev, G.; Schubert, I. The chromosomal distribution of histone methylation marks in gymnosperms differs from that of angiosperms. Chromosome Res. 2008, 16, 891–898. [Google Scholar] [CrossRef]
- Vičić, V.; Barišić, D.; Horvat, T.; Biruš, I.; Zoldos, V. Epigenetic characterization of chromatin in cycling cells of pedunculate oak, Quercus robur L. Tree Genet. Genomes 2013, 9, 1247–1256. [Google Scholar] [CrossRef]
- Rubio, B.; Provost, G.L.; Brachi, B.; Gerardin, T.; Brendel, O.; Tost, J.; Daviaud, C.; Gallusci, P. Species-specific epigenetic responses to drought stress of two sympatric oak species reflect their ecological preferences. bioRxiv 2023. [Google Scholar] [CrossRef]
- Ramírez-Valiente, J.A.; Sánchez-Gómez, D.; Aranda, I.; Valladares, F. Phenotypic Plasticity and Local Adaptation in Leaf Ecophysiological Traits of 13 Contrasting Cork Oak Populations under Different Water Availabilities. Tree Physiol. 2010, 30, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Mátyás, C. Adaptive pattern of phenotypic plasticity and inherent growth reveal the potential for assisted transfer in sessile oak (Quercus petraea L.). For. Ecol. Manag. 2021, 482, 118832. [Google Scholar] [CrossRef]
- Solé-Medina, A.; Robledo-Arnuncio, J.J.; Ramírez-Valiente, J.A. Multi-trait genetic variation in resource-use strategies and phenotypic plasticity correlates with local climate across the range of a Mediterranean oak (Quercus faginea). New Phytol. 2022, 234, 462–478. [Google Scholar] [CrossRef]
- Kormann, J.M.; van der Maaten-Theunissen, M.; Unterholzner, L.; Liesebach, M.; Liepe, K.J.; van der Maaten, E. Variation in vessel traits of northern red oak (Quercus rubra L.) provenances revealed high phenotypic plasticity to prevailing environmental conditions. Trees 2024, 38, 1283–1295. [Google Scholar] [CrossRef]
- Lesur, I.; Le Provost, G.; Bento, P.; Da Silva, C.; Leplé, J.-C.; Murat, F.; Ueno, S.; Bartholomé, J.; Lalanne, C.; Ehrenmann, F.; et al. The oak gene expression atlas: Insights into Fagaceae genome evolution and the discovery of genes regulated during bud dormancy release. BMC Genom. 2015, 16, 112. [Google Scholar] [CrossRef]
- Derory, J.; Léger, P.; Garcia, V.; Schaeffer, J.; Hauser, M.T.; Salin, F.; Luschnig, C.; Plomion, C.; Glössl, J.; Kremer, A. Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytol. 2006, 170, 723–738. [Google Scholar] [CrossRef]
- Kóscielniak, P.; Glazínska, P.; Zadworny, M. OakRootRNADB—A consolidated RNA-seq database for coding and noncoding RNA in roots of pedunculate oak (Quercus robur). Database 2022, 2022, baac097. [Google Scholar] [CrossRef]
- Baliuckas, V.; Pliura, A. Genetic variation and phenotypic plasticity of Quercus robur populations and open-pollinated families in Lithuania. Scand. J. For. Res. 2003, 18, 305–319. [Google Scholar] [CrossRef]
- Hautsalo, J.; Mathieu, P.; Elshibli, S.; Vakkari, P.; Raisio, J.; Pulkkinen, P. Variation in height and survival among northern populations of pedunculate oak (Quercus robur L.): Results of a 13-year field study. Silva Fenn. 2015, 49, 1274. [Google Scholar] [CrossRef]
- George, J.P.; Theroux-Rancourt, G.; Rungwattana, K.; Scheffknecht, S.; Momirovic, N.; Neuhauser, L.; Weißenbacher, L.; Watzinger, A.; Hietz, P. Assessing adaptive and plastic responses in growth and functional traits in a 10-year-old common garden experiment with pedunculate oak (Quercus robur L.) suggests that directional selection can drive climatic adaptation. Evol. Appl. 2020, 13, 2422–2438. [Google Scholar] [CrossRef] [PubMed]
- Kaplina, N.F. Influence of Crown Development on Radial Increment of Early and Late Stem Wood of Quercus robur. Vestn. Povolzhskogo Gos. Tekhnol. Univ. Seriya Les. Ekologiya. Prir. (Vestn. Volga State Univ. Technol. Ser. For. Ecol. Nat. Manag.) 2019, 2, 17–25, (In Russian with English Abstract). [Google Scholar] [CrossRef]
- Semerikov, L.F.; Glotov, N.V. Population structure of pedunculate oak. In Physiological and Population Variability; Collection of Scientific Papers: Saratov, Russia, 1983; pp. 81–83. (In Russian) [Google Scholar]
- Gneusheva, T.M.; Kozhevnikov, A.P.; Krutov, A.P. Intraspecific differentiationof English oak (Quercus robur L.) into intrapopulation groups, geographical and ecological populations in different parts of the area. Sci. News Belgorod State Univ. Ser. Nat. Sci. 2012, 9, 5–8. Available online: https://elibrary.ru/download/elibrary_17952322_23558175.pdf (accessed on 15 October 2024). (In Russian with English Abstract).
- Kryukova, S.A.; Shirnin, V.K. Fruiting of oak forests and plus-sized oak trees. Lesotekhnicheskii Zhurnal (For. Eng. J.) 2016, 2, 22–30, (In Russian with English Abstract). [Google Scholar] [CrossRef]
- Storozhenko, V.G.; Chebotarev, P.A.; Chebotareva, V.V.; Zasadnaya, V.A. Wood Biomass Stock Allocated to the Main Forest-Forming Species of the Southern Forest Steppes’ Stands. Lesovedenie 2020, 4, 327–334, (In Russian with English Abstract). [Google Scholar] [CrossRef]
- Chernodubov, A.I. Variability of acorns of the Voronezh upland oak grove. Actual Dir. Sci. Res. XXI Century Theory Pract. 2018, 6, 277–280, (In Russian with English Abstract). [Google Scholar]
- McClory, R.; Ellis, R.H.; Lukac, M.; Clark, J. Pollen source affects acorn production in pedunculate oak (Quercus robur L.). J. For. Res. 2024, 35, 124. [Google Scholar] [CrossRef]
- Batos, B. Diversity of Pedunculate Oak (Quercus robur L.); Foundation Andrejević: Belgrade, Serbia, 2012; ISBN 1450-801X. (In Serbian with English Abstract). [Google Scholar]
- Batos, B.; Miljković, D. Pollen viability in Quercus robur L. Arch. Biol. Sci. 2017, 69, 111–117. [Google Scholar] [CrossRef]
- Batos, B.; Miljković, D.; Ninić-Todorović, J. Length of vegetation period as parameter of common oak (Quercus robur L.) phenological variability. Genetika 2012, 44, 139–152. [Google Scholar] [CrossRef]
- Bobinac, M.; Batos, B.; Miljković, D.; Radulović, S. Polycyclism and phenological variability in the common oak (Quercus robur L.). Arch. Biol. Sci. 2012, 64, 97–105. [Google Scholar] [CrossRef]
- Šušić, N.M.; Bobinac, M.; Kerkez, I.; Živković, A.B.; Vojinović, N. Height growth characteristics of one-year-old northern red oak seedlings (Quercus rubra L.) in full light conditions. Reforesta 2016, 2, 32–38. [Google Scholar] [CrossRef]
- Silchenko, I.I. Phenological forms of pedunculate oak (Quercus robur L.) in various types of landscapes of the Bryansk region. Bull. Bryansk State Univ. 2012, 4, 158–161. Available online: https://cyberleninka.ru/article/n/fenologicheskie-formy-duba-chereshchatogo-quercus-robur-l-v-razlichnyh-tipah-landshaftov-bryanskoy-oblasti (accessed on 25 October 2024). (In Russian).
- Danilov, M.D.; Guryev, V.D.; Fedorov, P.N. Some features of the population structure of pedunculate oak under conditions of the northeastern part of its range. In Regularities of Intraspecific Variability of Deciduous Tree Species; Mamaev, S.A., Makhnev, A.K., Eds.; Ural Scientific Center of the USSR Academy of Sciences: Sverdlovsk, Russia, 1975; pp. 13–17. [Google Scholar]
- Efimov, Y.P. On the question of the territorial distribution of the phenological forms of the petiolate oak. In Central Research Institute of Forest Genetics and Breeding (ЦНИИЛГиС) “Genetics, Selection, and Introduction of Forest Species”; ЦНИИЛГиС: Voronezh, Russia, 1975; pp. 37–45. (In Russian) [Google Scholar]
- En’kova, E.I. Tellermanovskii Les i ego Vosstanovlenie (Tellerman Forest and Its Recovery); Voronezh Gos. Univ.: Voronezh, Russia, 1976; 214p. (In Russian) [Google Scholar]
- Puchałka, R.; Koprowski, M.; Przybylak, R. Fenologia liści i ksylogeneza w zróżnicowanej wiekowo populacji dębu szypułkowego. Klimatyczne uwarunkowania życia lasu. In Proceedings of the Ogólnopolska Konferencja Naukowa, Streszczenia Referatów, Rogów, Poland, 16–17 June 2015; pp. 16–17. [Google Scholar]
- Slepykh, O.O. Rhythm of phenology and distribution phenological forms of Pedunculate oak (Quercus robur L.) in Donetsk region. Biol. Syst. 2016, 8, 272–279. [Google Scholar]
- Wesołowski, T.; Rowiński, P. Late leaf development in pedunculate oak (Quercus robur): An antiherbivore defence? Scand. J. For. Res. 2008, 23, 386–394. [Google Scholar] [CrossRef]
- Orlović, S.; Šimunovački, D.; Djorđević, Z.; Pilipović, A.; Radosavljević, N. Očuvanje Genofonda I Proizvodnja Semena Hrasta Lužnjaka (Quercus robur L.). In 250 Godina Ravnog Srema; Vojvodinašume: Petrovaradin, Serbia, 2008; 378p, ISBN 978-86-906665-1-5. [Google Scholar]
- Utkina, I.; Rubtsov, V. Studies of Phenological Forms of Pedunculate Oak. Contemp. Probl. Ecol. 2017, 10, 804–811. [Google Scholar] [CrossRef]
- Pirko, Y.V.; Netsvetov, M.; Kalafat, L.O.; Pirko, N.M.; Rabokon, A.M.; Privalikhin, S.M.; Demkovich, A.Y.; Bilonozhko, Y.O.; Blume, Y.B. Genetic features of the phenological forms of Quercus robur (Fagaceae) according to the analysis of the introns polymorphism of β-tubulin genes and microsatellite loci. Ukr. Bot. J. 2018, 75, 489–500. [Google Scholar] [CrossRef]
- Ueno, S.; Klopp, C.; Noirot, C.; Léger, V.; Prince, E.; Kremer, A.; Plomion, C.; Le Provost, G. Detection of genes involved in bud phenology in sessile oak (Quercus petraea Matt. Liebl) combining digital expression analysis and Q-PCR. BMC Proc. 2011, 5, 20. [Google Scholar] [CrossRef]
- Batos, B.; Šešlija Jovanović, D.; Miljković, D. Spatial and temporal variability of flowering in the pedunculate oak (Quercus robur L.). Šumarski List. 2014, 7–8, 371–379. Available online: https://hrcak.srce.hr/129595 (accessed on 15 October 2024).
- Andrić, I.; Jazbec, A.; Pintar, V.; Kajba, D. Modelling the timing of leaf unfolding in pedunculate oak (Quercus robur L.) clonal seed orchard. Šumarski List 2018, 142, 137–148. [Google Scholar] [CrossRef]
- Tikvić, I.; Seletković, Z.; Ugarković, D. The relationship between phenoform development of pedunculate oak and forest soil microclimate. Glas. Šumske Pokuse 2006, 5, 91–104. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20063205030 (accessed on 15 October 2024).
- Chokheli, V.; Kozlovsky, B.; Sereda, M.; Lysenko, V.; Fesenko, I.; Varduny, T.; Kapralova, O.; Bondarenko, E. Preliminary comparative analysis of phenological varieties of Quercus robur by ISSR-markers. J. Bot. 2016, 2016, 7910451. [Google Scholar] [CrossRef]
- Puchałka, R.; Koprowski, M.; Przybylak, J.; Przybylak, R.; Dąbrowski, H.P. Did the late spring frost in 2007 and 2011 affect tree-ring width and earlywood vessel size in Pedunculate oak (Quercus robur) in northern Poland? Int. J. Biometeorol. 2016, 60, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Puchałka, R.; Koprowski, M.; Gričar, J.; Przybylak, R. Does tree-ring formation follow leaf phenology in Pedunculate oak (Quercus robur L.)? Eur. J. For. Res. 2017, 136, 259–268. [Google Scholar] [CrossRef]
- Kitin, P. Dynamics of cambial activity in the stem of early- and late-flushing forms of oak (Quercus robur vars. praecox and tardiflora) in the Park of Freedom, Sofia. Nauk. Gorata 1992, 27, 3–13. [Google Scholar]
- Kostić, S.; Orlović, S.; Karaklić, V.; Kesić, L.; Zorić, M.; Stojanović, D.B. Allometry and Post-Drought Growth Resilience of Pedunculate Oak (Quercus robur L.) Varieties. Forests 2021, 12, 930. [Google Scholar] [CrossRef]
- Koval, I.M.; Kostyashkin, D.C. The influence of climate and recreation on formation of layers of annual wood of early and late forms Quercus robur L. in Kharkiv. Greenbelt. Sci. Bull. UNFU 2015, 25, 52–58. [Google Scholar]
- Levlev, V.V. Ecotypes and Forms of the Petiolate Oak in the Voronezh Nature Reserve: Abstract of the Dissertation of the Phd of Agricultural Sciences; Voronezh State Forestry Academy: Voronezh, Russia, 1970; 20p. (In Russian) [Google Scholar]
- Lukyanets, V.B. Intraspecific Variability of the Petiolate Oak in the Central Forest-Steppe; Voronezh Gos. Univ.: Voronezh, Russia, 1979; 215p. (In Russian) [Google Scholar]
- Shitov, V.P. The Form Diversity of Floodplain Oak Forests of Polesie and the Ways of Their Economic Use: Abstract of the Dissertation of the Phd of Agricultural Sciences; BGU: Bryansk, Russia, 1986; 25p. (In Russian) [Google Scholar]
- Shutyaev, A.M. Biodiversity of the Pedunculate oak (Quercus robur L.) and Its Use in Breeding and Afforestation: Abstract of the Dissertation of the Dr. Agricultural Sciences; Research Institute of Forest Genetics and Breeding: Bryansk, Russia, 1998; 43p. (In Russian) [Google Scholar]
- Kobranov, N.P. Oak Breeding; New Village: Voronezh, Russia, 1925; 25p, Available online: http://lestehjournal.ru/sites/default/files/journal_pdf/81-98.pdf (accessed on 25 October 2022). (In Russian)
- Pukacka, S. Wzrost i rozwój. In Dęby. Quercus robur L., Quercus petraea Liebl; Bugała, W., Ed.; Nasze Drzewa Leśne: Kórnik, Poland, 2006; Volume 11, pp. 165–303. [Google Scholar]
- Antin, C.; Pélissier, R.; Vincent, G.; Couteron, P. Crown allometries are less responsive than stem allometry to tree size and habitat variations in an Indian monsoon forest. Trees Struct. Funct. 2013, 27, 1485–1495. [Google Scholar] [CrossRef]
- Rubtsov, V.V.; Utkina, I.A. Adaptatsionnyye Reaktsii Duba na Defoliatsiyu; Institute of Forestry of the Russian Academy of Sciences: Moscow, Russia, 2008; 302p. (In Russian) [Google Scholar]
- Vikhrov, V.E. Stroenie i Fiziko-Mekhanicheskie Svoistva Drevesiny duba; Izd-vo Akademii nauk SSSR: Moskva, Russia, 1954; 264p. (In Russian) [Google Scholar]
- van Asch, M.; Visser, M.E. Phenology of forest caterpillars and their host trees: The importance of synchrony. Ann. Rev. Entomol. 2007, 52, 37–55. [Google Scholar] [CrossRef]
- Wagenhoff, E.; Blum, R.; Engel, K.; Veit, H.; Delb, H. Temporal synchrony of Thaumetopoea processionea egg hatch and Quercus robur budburst. J. Pest Sci. 2013, 86, 193–202. [Google Scholar] [CrossRef]
- Milenin, A.I.; Popova, A.A.; Shestibratov, K.A. Effect of Type of Forest Growth Conditions and Climate Elements on the Dynamics of Radial Growth in English Oak (Quercus robur L.) of Early and Late Phenological Forms. Forests 2023, 14, 11. [Google Scholar] [CrossRef]
- Denk, T.; Grimm, G.W.; Manos, P.S.; Deng, M.; Hipp, A.L. An Updated Infrageneric Classification of the Oaks: Review of Previous Taxonomic Schemes and Synthesis of Evolutionary Patterns. In Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.; Gil-Pelegrín, E., Peguero-Pina, J., Sancho-Knapik, D., Eds.; Springer: Cham, Switzerland, 2017; Volume 7, pp. 13–38. ISBN 3319690981. [Google Scholar] [CrossRef]
- Hipp, A.L.; Manos, P.S.; González-Rodríguez, A.; Hahn, M.; Kaproth, M.; McVay, J.D.; Avalos, S.V.; Cavender-Bares, J. Sympatric Parallel Diversification of Major Oak Clades in the Americas and the Origins of Mexican Species Diversity. New Phytol. 2018, 217, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Hipp, A.L.; Manos, P.S.; Hahn, M.; Avishai, M.; Bodénès, C.; Cavender-Bares, J.; Crowl, A.A.; Deng, M.; Denk, T.; Fitz-Gibbon, S.; et al. Genomic Landscape of the Global Oak Phylogeny. New Phytol. 2020, 226, 1198–1212. [Google Scholar] [CrossRef] [PubMed]
- Kremer, A.; Abbott, A.G.; Carlson, J.E.; Manos, P.S.; Plomion, C.; Sisco, P.; Staton, M.E.; Ueno, S.; Vendramin, G.G. Genomics of Fagaceae. Tree Genet. Genomes 2012, 8, 583–610. [Google Scholar] [CrossRef]
- Hipp, A.L. Oak Origins: From Acorns to Species and the Tree of Life; University of Chicago Press: Chicago, IL, USA, 2024; 288p. [Google Scholar]
- Kremer, A.; Hipp, A.L. Oaks: An evolutionary success story. New Phytol. 2020, 226, 987–1011. [Google Scholar] [CrossRef] [PubMed]
- Gosling, R.H.; Jackson, R.W.; Elliot, M.; Nichols, C.P. Oak declines: Reviewing the evidence for causes, management implications and research gaps. Ecol. Solut. Evid. 2024, 5, e12395. [Google Scholar] [CrossRef]
- Sever, K.; Bogdan, S.; Škvorc, Ž. Response of photosynthesis, growth, and acorn mass of pedunculate oak to different levels of nitrogen in wet and dry growing seasons. J. For. Res. 2023, 34, 167–176. [Google Scholar] [CrossRef]
- Kebert, M.; Kostić, S.; Stojnić, S.; Čapelja, E.; Markić, A.G.; Zorić, M.; Kesić, L.; Flors, V. A Fine-Tuning of the Plant Hormones, Polyamines and Osmolytes by Ectomycorrhizal Fungi Enhances Drought Tolerance in Pedunculate Oak. Int. J. Mol. Sci. 2023, 24, 7510. [Google Scholar] [CrossRef]
- Trudić, B.; Draškić, G.; Le Provost, G.; Stojnić, S.; Pilipović, A.; Ivezić, A. Expression profiles of 11 candidate genes involved in drought tolerance of pedunculate oak (Quercus robur L.). Possibilities for genetic monitoring of the species. Silvae Genet. 2021, 70, 226–234. [Google Scholar] [CrossRef]
- Bose, A.K.; Scherrer, D.; Camarero, J.J.; Ziche, D.; Babst, F.; Bigler, C.; Bolte, A.; Dorado-Liñán, I.; Etzold, S.; Fonti, P.; et al. Climate Sensitivity and Drought Seasonality Determine Post-Drought Growth Recovery of Quercus petraea and Quercus robur in Europe. Sci. Total Environ. 2021, 784, 147222. [Google Scholar] [CrossRef]
- Basu, S.; Stojanović, M.; Jevsenak, J.; Buras, A.; Pipíšková, V.; Svetlik, J. Ecological responses of pedunculate oak and narrow-leaved ash to varying groundwater levels in a South Moravian floodplain forest. In Book of Abstracts TRACE 2024—Tree Rings in Archaeology, Climatology and Ecology, Proceedings of the Annual Meeting and International Conference of the Association for Tree-Ring Research (ATR), Brașov, Romania, 3–8 June 2024; Transilvania University of Braşov: Braşov, Romania, 2024; p. 59. Available online: https://silvic.unitbv.ro/images/conferinte/trace2024/TRACE2024_Book_of_abstracts.pdf (accessed on 15 October 2024).
- Basu, S.; Stojanović, M.; Jevšenak, J.; Buras, A.; Kulhavý, J.; Hornová, H.; Světlík, J. Pedunculate oak is more resistant to drought and extreme events than narrow-leaved ash in Central European floodplain forests. For. Ecol. Manag. 2024, 561, 121907. [Google Scholar] [CrossRef]
- Kesić, L.; Čater, M.; Orlović, S.; Matović, B.; Stojanović, M.; Bojović, M. Proximity to riverbed influences physiological response of adult pedunculate oak trees. Topola 2023, 211, 21–28. [Google Scholar] [CrossRef]
- Resente, G.; Di Fabio, A.; Scharnweber, T.; Gillert, A.; Crivellaro, A.; Anadon-Rosell, A.; Trouillier, M.; Kreyling, J.; Wilmking, M. The importance of variance and microsite conditions for growth and hydraulic responses following long-term rewetting in pedunculate oak wood. Trees 2024, 38, 1161–1175. [Google Scholar] [CrossRef]
- Gérard, B. Search for Physiological Markers of Tolerance to Waterlogging in Pedunculate Oak (Quercus robur L.) and Sessile Oak (Quercus petraea [Mattus.] Liebl. Ph.D. Thesis, University of Franche-Comté, Besançon, France, 2008. Available online: https://theses.hal.science/tel-00725019 (accessed on 15 October 2024). (In French with English Abstract).
- Le Provost, G.; Lesur, I.; Lalanne, C.; Da Silva, C.; Labadie, K.; Aury, J.M.; Leple, J.C.; Plomion, C. Implication of the suberin pathway in adaptation to waterlogging and hypertrophied lenticels formation in pedunculate oak (Quercus robur L.). Tree Physiol. 2016, 36, 1330–1342. [Google Scholar] [CrossRef]
- Horáček, P.; Šlezingerová, J.; Gandelová, L. Analysis of cambial activity and formation of wood in Quercus robur L. under conditions of a floodplain forest. J. For. Sci. 2003, 49, 412–418. [Google Scholar] [CrossRef]
- Perić, S.; Jazbec, A.; Medak, J.; Topić, V.; Ivanković, M. Analysis of biomass of 16th Pedunculate Oak provenances. Period. Biol. 2006, 108, 649–653. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20073035730# (accessed on 15 October 2024).
- Popović, V.; Vemić, A.; Jovanović, S.; Lučić, A.; Rakonjac, L.; Ivanović, B.; Miljković, D. The influence of origin on the quality of pedunculate oak (Quercus robur L.) seedlings. Reforesta 2024, 17, 32–40. [Google Scholar] [CrossRef]
- Dewan, S.; De Frenne, P.; Kepfer-Rojas, S.; Wasof, S.; Vander Mijnsbrugge, K.; Verheyen, K. Weak but Persistent Provenance Effects Modulate the Response of Quercus robur (Fagaceae) Seedlings to Elevated Temperature. Ecoevorxiv 2021. [Google Scholar] [CrossRef]
- Cuza, P. Differences between provenances and pedunculate oak (Quercus robur) trees after the lethal dose (LD50) of electrolyte leakage. Stud. Univ. Mold. Ser. Științe Ale Nat. 2023, 6, 46–52, (In Moldavian with English Abstract). [Google Scholar] [CrossRef]
- Ballian, D.; Hodžić, M.M.; Kvesić, S. Grouping of Pedunculate Oak Populations (Quercus robur L.) Based on Morphological Characteristics and Ecological Vegetation Zoning of Bosnia and Herzegovina. 2017, Abstract. Available online: https://www.researchgate.net/publication/327394119_Grouping_of_Pedunculate_Oak_Populations_Quercus_robur_L_Based_on_Morphological_Characteristics_and_Ecological_Vegetation_Zoning_of_Bosnia_and_Herzegovina (accessed on 15 October 2024).
- Ballian, D.; Hodžić, M.M. Preliminary assessment of genetic gain through the selection of different pedunculate oak populations in provenance test. Genet. Appl. 2022, 6, 61–69. [Google Scholar] [CrossRef]
- Ugarković, D.; Tikvić, I.; Mikac, S.; Stankić, I.; Balta, D. The influence of changing climate extremes on the ecological niche of pedunculated oak in Croatia. South-East Eur. For. 2016, 7, 143–148. [Google Scholar] [CrossRef]
- Sonesson, K.; Drobyshev, I. Recent advances on oak decline in southern Sweden. Ecol. Bull. 2010, 53, 197–208. Available online: http://www.jstor.org/stable/41442031 (accessed on 15 October 2024).
- Repo, T.; Volanen, V.; Pulkkinen, P. No difference in the maximum frost hardiness of different pedunculate oak populations in Finland. Silva Fenn. 2022, 56, 10620. [Google Scholar] [CrossRef]
- Franzén, M.; Hall, M.; Sunde, J.; Forsman, A. Regeneration patterns of native and introduced oak species in Sweden: Investigating the roles of latitude, age, and environmental gradients. For. Ecol. Manag. 2024, 561, 121871. [Google Scholar] [CrossRef]
- Firmat, C.; Delzon, S.; Louvet, J.M.; Parmentier, J.; Kremer, A. Evolutionary dynamics of the leaf phenological cycle in an oak metapopulation along an elevation gradient. J. Evol. Biol. 2017, 30, 2116–2131. [Google Scholar] [CrossRef]
- Caignard, T.; Kremer, A.; Firmat, C.; Nicolas, M.; Venner, S.; Delzon, S. Increasing spring temperatures favor oak seed production in temperate areas. Sci. Rep. 2017, 7, 8555. [Google Scholar] [CrossRef]
- Hanley, M.E.; Cook, B.I.; Fenner, M. Climate Variation, Reproductive Frequency and Acorn Yield in English Oaks. J. Plant Ecol. 2019, 12, 542–549. [Google Scholar] [CrossRef]
- Kelly, P.M.; Leuschner, H.H.; Briffa, K.R.; Harris, I.C. The climatic interpretation of pan-European signature years in oak ring-width series. Holocene 2002, 12, 689–694. [Google Scholar] [CrossRef]
- Büntgen, U.; Trouet, V.; Frank, D.; Leuschner, H.H.; Friedrichs, D.; Luterbacher, J.; Esper, J. Tree-ring indicators of German summer drought over the last millennium. Quat. Sci. Rev. 2010, 29, 1005–1016. [Google Scholar] [CrossRef]
- van der Werf, G.W.; Sass-Klaassen, U.; Mohren, G.M.J. The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 2007, 25, 103–112. [Google Scholar] [CrossRef]
- Sohar, K.; Läänelaid, A.; Eckstein, D.; Helama, S.; Jaagus, J. Dendroclimatic signals of pedunculate oak (Quercus robur L.) in Estonia. Eur. J. For. Res. 2014, 133, 535–549. [Google Scholar] [CrossRef]
- Barsoum, N.; Eaton, E.L.; Levanič, T.; Pargade, J.; Bonnart, X.; Morison, J.I.L. Climatic drivers of oak growth over the past one hundred years in mixed and monoculture stands in southern England and northern France. Eur. J. For. Res. 2014, 134, 33–51. [Google Scholar] [CrossRef]
- Perkins, D.; Uhl, E.; Biber, P.; Du Toit, B.; Carraro, V.; Rötzer, T.; Pretzsch, H. Impact of Climate Trends and Drought Events on the Growth of Oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) within and beyond Their Natural Range. Forests 2018, 9, 108. [Google Scholar] [CrossRef]
- Netsvetov, M.; Sergeyev, M.; Nikulina, V.; Korniyenko, V.; Prokopuk, Y. The climate to growth relationships of pedunculate oak in steppe. Dendrochronologia 2017, 44, 31–38. [Google Scholar] [CrossRef]
- Matveev, S.; Milenin, A.; Timashuk, D. The effects of limiting climatic factors on the increment of native tree species (Pinus silvestris L., Quercus robur L.) of the Voronezh region. J. For. Sci. 2018, 64, 427–434. [Google Scholar] [CrossRef]
- Kalisty, A. Influence of Pluvial and Thermal Conditions on Radial Growth of Pedunculate Oak (Quercus robur L.) in Western and North–Eastern Poland. Master’s Thesis, Bialystok University of Technology, Białystok, Poland, 2022. [Google Scholar]
- Ianbaev, R.Y.; Bakhtina, S.Y.; Sadykov, A.K. Climatic response in radial increment of pedunculate oak stands in the Southern Urals. In Forest Ecosystems Under Climate Change: Biological Productivity and Remote Monitoring: Compendium of Research Papers; Kurbanov, E.A., Ed.; Volga State University of Technology: Yoshkar-Ola, Russia, 2023; Volume 9, pp. 45–52, (In Russian with English Abstract). [Google Scholar] [CrossRef]
- Rellstab, C.; Zoller, S.; Walthert, L.; Lesur, I.; Pluess, A.R.; Graf, R.; Bodénès, C.; Sperisen, C.; Kremer, A.; Gugerli, F. Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol. Ecol. 2016, 25, 5907–5924. [Google Scholar] [CrossRef]
- Saleh, D.; Chen, J.; Leplé, J.-C.; Leroy, T.; Truffaut, L.; Dencausse, B.; Lalanne, C.; Labadie, K.; Lesur, I.; Bert, D.; et al. Genome-wide evolutionary response of European oaks during the Anthropocene. Evol. Lett. 2022, 6, 4–20. [Google Scholar] [CrossRef]
- Puchałka, R.; Prislan, P.; Klisz, M.; Koprowski, M.; Gričar, J. Tree-ring formation dynamics in Fagus sylvatica and Quercus petraea in a dry and a wet year. Dendrobiology 2024, 91, 1–15. [Google Scholar] [CrossRef]
- Hlásny, T.; Mátyás, C.; Seidl, R.; Kulla, L.; Merganicova, K.; Trombik, J.; Dobor, L.; Barcza, Z.; Konopka, B. Climate change increases the drought risk in Central European forests: What are the options for adaptation? Lesn. Cas. For. J. 2014, 60, 5–18. [Google Scholar] [CrossRef]
- Bussotti, F.; Pollastrini, M.; Holland, V.; Brüggemann, W. Functional traits and adaptive capacity of European forests to climate change. Environ. Exp. Bot. 2015, 111, 91–113. [Google Scholar] [CrossRef]
- Meger, J.; Ulaszewski, B.; Chmura, D.J.; Burczyk, J. Signatures of local adaptation to current and future climate in phenology-related genes in natural populations of Quercus robur. BMC Genom. 2024, 25, 78. [Google Scholar] [CrossRef]
- Cavender-Bares, J.; Reich, P.B. Shocks to the system: Community assembly of the oak savanna in a 40-year fire frequency experiment. Ecology 2012, 93, S52–S69. [Google Scholar] [CrossRef]
- Cavender-Bares, J. Diversification, Adaptation, and Community Assembly of the American Oaks (Quercus), a Model Clade for Integrating Ecology and Evolution. New Phytol. 2019, 221, 669–692. [Google Scholar] [CrossRef] [PubMed]
- Sean, C.T. Genetic vs. phenotypic responses of trees to altitude. Tree Physiol. 2011, 31, 1161–1163. [Google Scholar] [CrossRef]
- Bresson, C.C.; Vitasse, Y.; Kremer, A.; Delzon, S. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiol. 2011, 31, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Zhang, X.; Yue, M.; Liu, X.; Li, Q.; Shang, H.; Meng, Q.; Zhang, R. Leaf traits suggest different ecological strategies for two Quercus species along an altitudinal gradient in the Qinling Mountains. J. For. Res. 2015, 20, 501–513. [Google Scholar] [CrossRef]
- Kaproth, M.A.; Fredericksen, B.W.; Antonio González-Rodríguez, A.; Hipp, A.L.; Cavender-Bares, J. Drought response strategies are coupled with leaf habit in 35 evergreen and deciduous oak (Quercus) species across a climatic gradient in the Americas. New Phytol. 2023, 239, 888–904. [Google Scholar] [CrossRef]
- Liu, D.; Guo, H.; Yan, L.-P.; Gao, L.; Zhai, S.; Xu, Y. Physiological, Photosynthetic and Stomatal Ultrastructural Responses of Quercus acutissima Seedlings to Drought Stress and Rewatering. Forests 2024, 15, 71. [Google Scholar] [CrossRef]
- Xiong, S.; Wang, Y.; Chen, Y.; Gao, M.; Zhao, Y.; Wu, L. Effects of Drought Stress and Rehydration on Physiological and Biochemical Properties of Four Oak Species in China. Plants 2022, 11, 679. [Google Scholar] [CrossRef]
- Tikhomirova, T.S.; Krutovsky, K.V.; Shestibratov, K.A. Molecular Traits for Adaptation to Drought and Salt Stress in Birch, Oak and Poplar Species. Forests 2023, 14, 7. [Google Scholar] [CrossRef]
- Klekowski, E.J. Genetic load and its causes in long-lived plants. Trees 1988, 2, 195–203. [Google Scholar] [CrossRef]
- Burian, A.; de Reuille, P.B.; Kuhlemeier, C. Patterns of Stem Cell Divisions Contribute to Plant Longevity. Curr. Biol. 2016, 26, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Padovan, A.; Keszei, A.; Foley, W.J.; Kulheim, C. Differences in gene expression within a striking phenotypic mosaic Eucalyptus tree that varies in susceptibility to herbivory. BMC Plant Biol. 2013, 13, 29. [Google Scholar] [CrossRef]
- Tobias, P.A.; Guest, D.I. Tree immunity: Growing old without antibodies. Trends Plant Sci. 2014, 19, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Schmid-Siegert, E.; Sarkar, N.; Iseli, C.; Calderon, S.; Gouhier-Darimont, C.; Chrast, J.; Cattaneo, P.; Schütz, F.; Farinelli, L.; Pagni, M.; et al. Low number of fixed somatic mutations in a long-lived oak tree. Nat. Plants 2017, 3, 926–929. [Google Scholar] [CrossRef]
- Biondi, F.; Meko, D.M.; Piovesan, G. Maximum Tree Lifespans Derived from Public-Domain Dendrochronological Data. iScience 2023, 26, 106138. [Google Scholar] [CrossRef]
- Popov, V.N.; Syromyatnikov, M.Y.; Franceschi, C.; Moskalev, A.A.; Krutovsky, K.V. Genetic mechanisms of aging in plants: What can we learn from them? Ageing Res. Rev. 2022, 77, 101601. [Google Scholar] [CrossRef]
- Batalova, A.Y.; Krutovsky, K.V. Genetic and epigenetic mechanisms of longevity in forest trees. Int. J. Mol. Sci. 2023, 24, 10403. [Google Scholar] [CrossRef]
- Cui, J.; Li, X.; Lu, Z.; Jin, B. Plant secondary metabolites involved in the stress tolerance of long-lived trees. Tree Physiol. 2024, 44, tpae002. [Google Scholar] [CrossRef]
- Liu, S.; Xu, H.; Wang, G.; Jin, B.; Cao, F.; Wang, L. Tree Longevity: Multifaceted Genetic Strategies and Beyond. Plant Cell Environ. 2025, 48, 244–259. [Google Scholar] [CrossRef]
- Volkava, D.; Riha, K. Growing old while staying young: The unique mechanisms that defy aging in plants. EMBO Rep. 2024, 25, 934–938. [Google Scholar] [CrossRef]
- Ianbaev, R.Y.; Bakhtina, S.Y.; Sadykov, A.K.; Yanbaev, Y.A. Analysis of the relationship between climatic factors and genetic diversity of pedunculate oak populations in different parts of the Republic of Bashkortostan. Bull. Perm Univ. Biol. 2022, 4, 327–334, (In Russian with English Abstract). [Google Scholar] [CrossRef]
- Kajba, D.; Katičić, I.; Bogdan, S. Estimation of Genetic Parameters in Open Pollinated Progeny Trials from Plus trees of Pedunculate Oak (Quercus robur L.) Selected in Posavina and Podravina and Podunavlje Seed Zones. Croat. J. For. Eng. 2011, 32, 177–192. Available online: https://hrcak.srce.hr/68214 (accessed on 15 October 2024).
- Fedorkov, A.L. Phenotypical selection in forest breeding. Lesovedenie 2019, 6, 580–584, (In Russian with English Abstract). [Google Scholar] [CrossRef]
- Herzog, S. Genetic inventory of European oak populations: Consequences for breeding and gene conservation. Ann. For. Sci. 1996, 53, 783–793. [Google Scholar] [CrossRef]
- Kostrikin, V.A.; Shirnin, V.K.; Kryukova, S.A. Criteria for Assessment of Plus Oak Stands. Lesn. Zhurnal (For. J.) 2021, 4, 68–79, (In Russian with English Abstract). [Google Scholar] [CrossRef]
- Shirnin, V.C.; Kryukova, S.A. Modeling the perfect grade common oak high quality wood. In Current Research Trends of the XXI Century: Theory and Practice; G.F. Morozov Voronezh State Forest Engineering University: Voronezh, Russia, 2015; Volume 3, pp. 396–400, (In Russian with English Abstract); Available online: https://elibrary.ru/download/elibrary_25116505_76094796.pdf (accessed on 15 October 2024).
- Tsarev, A.P.; Laur, N.V.; Tsarev, V.A.; Tsareva, R.P. The Current State of Forest Breeding in the Russian Federation: The Trend of Recent Decades. Lesn. Zhurnal (For. J.) 2021, 6, 38–55, (In Russian with English Abstract). Available online: https://elibrary.ru/download/elibrary_47312335_38202950.pdf (accessed on 15 October 2024). (In Russian with English Abstract). [CrossRef]
- Sukhorukikh, Y.I.; Biganova, S.G. Selection Criteria for Plus Stands in Field-Protective Forest Belts in the North-Western Caucasus. Lesotekhnicheskii Zhurnal (For. Eng. J.) 2023, 13, 102–116, (In Russian with English Abstract). [Google Scholar] [CrossRef]
- Trudić, B.; Avramidou, E.; Fussi, B.; Neophytou, C.; Stojnić, S.; Pilipović, A. Conservation of Quercus robur L. genetic resources in its south-eastern refugium using SSR marker system–a case study from Vojvodina province, Serbia. Austrian J. For. Sci. 2021, 138, 117–140. [Google Scholar]
- Stojnić, S.; Trudić, B.; Galović, V.; Šimunovački, Đ.; Đorđević, B.; Rađević, V.; Orlović, S. Conservation of pedunculate oak (Quercus robur L.): Genetic resources at the territory of public enterprise ‘Vojvodinašume’. Topola (Poplar) 2014, 193/194, 47–71, (In Serbian with English Abstract and Summary). [Google Scholar]
- Fedorkov, A.L. Forest Tree Breeding and Genetic Diversity of Wood Species. Lesn. Zhurnal (For. J.) 2024, 1, 23–32. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Lebedeva, T.N.; Chernodubov, A.I.; Shestibratov, K.A. Genomic Selection for Forest Tree Improvement: Methods, Achievements and Perspectives. Forests 2020, 11, 1190. [Google Scholar] [CrossRef]
- Grattapaglia, D. Twelve Years into Genomic Selection in Forest Trees: Climbing the Slope of Enlightenment of Marker Assisted Tree Breeding. Forests 2022, 13, 1554. [Google Scholar] [CrossRef]
- Sharma, U.; Sankhyan, H.P.; Kumari, A.; Thakur, S.; Thakur, L.; Mehta, D.; Sharma, S.; Sharma, S.; Sankhyan, N. Genomic selection: A revolutionary approach for forest tree improvement in the wake of climate change. Euphytica 2024, 220, 9. [Google Scholar] [CrossRef]
- Alexandre, H.; Truffaut, L.; Klein, E.; Ducousso, A.; Chancerel, E.; Lesur, I.; Dencausse, B.; Louvet, J.-M.; Nepveu, G.; Torres-Ruiz, J.M.; et al. How does contemporary selection shape oak phenotypes? Evol. Appl. 2020, 13, 2772–2790. [Google Scholar] [CrossRef]
- Caignard, T.; Truffaut, L.; Delzon, S.; Dencausse, B.; Lecacheux, L.; Torres-Ruiz, J.M.; Kremer, A. Fluctuating selection and rapid evolution of oaks during recent climatic transitions. Plants People Planet 2024, 6, 221–237. [Google Scholar] [CrossRef]
Assembly (Type) | GenBank Accession Number | Level | Release | WGS Accession | Scaffold Count | Genome Size, Mbp | Submitter |
---|---|---|---|---|---|---|---|
ASM301314v1 (haploid) | GCA_003013145.1 | Scaffold | Mar, 2018 | PVWZ01 | 84,416 | 719.6 | Swiss Institute of Bioinformatics |
dhQueRobu3.1 (principal haplotype of diploid) | GCA_932294415.1 (NCBI RefSeq) | Chromosome | Mar, 2022 | CAKOAN01 | 95 | 789.2 | Wellcome Sanger Institute |
dhQueRobu3.1 (alternate haplotype of diploid) | GCA_932294425.1 | Scaffold | Mar, 2022 | CAKOAP01 | 1219 | 762.4 | Wellcome Sanger Institute |
Q_robur_v1 | GCA_900291515.1 | Scaffold | Mar, 2018 | OLKR01 | 550 | 814.3 | Genoscope CEA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krutovsky, K.V.; Popova, A.A.; Yakovlev, I.A.; Yanbaev, Y.A.; Matveev, S.M. Response of Pedunculate Oak (Quercus robur L.) to Adverse Environmental Conditions in Genetic and Dendrochronological Studies. Plants 2025, 14, 109. https://doi.org/10.3390/plants14010109
Krutovsky KV, Popova AA, Yakovlev IA, Yanbaev YA, Matveev SM. Response of Pedunculate Oak (Quercus robur L.) to Adverse Environmental Conditions in Genetic and Dendrochronological Studies. Plants. 2025; 14(1):109. https://doi.org/10.3390/plants14010109
Chicago/Turabian StyleKrutovsky, Konstantin V., Anna A. Popova, Igor A. Yakovlev, Yulai A. Yanbaev, and Sergey M. Matveev. 2025. "Response of Pedunculate Oak (Quercus robur L.) to Adverse Environmental Conditions in Genetic and Dendrochronological Studies" Plants 14, no. 1: 109. https://doi.org/10.3390/plants14010109
APA StyleKrutovsky, K. V., Popova, A. A., Yakovlev, I. A., Yanbaev, Y. A., & Matveev, S. M. (2025). Response of Pedunculate Oak (Quercus robur L.) to Adverse Environmental Conditions in Genetic and Dendrochronological Studies. Plants, 14(1), 109. https://doi.org/10.3390/plants14010109