Effects of Drought Stress and Rehydration on Physiological and Biochemical Properties of Four Oak Species in China
<p>Effects of drought stress and rewatering on soil moisture content of four oak species (DR-F: drought-rewatering sample of <span class="html-italic">Q. fabri</span>; CK-F: well watered sample of <span class="html-italic">Q. fabri</span>; DR-S: drought-rewatering sample of <span class="html-italic">Q. serrata</span>; CK-S: well watered sample of <span class="html-italic">Q. serrata</span>; DR-A: drought-rewatering sample of <span class="html-italic">Q. acutissima</span>; CK-A: well watered sample of <span class="html-italic">Q. acutissima</span>; DR-V: drought-rewatering sample of <span class="html-italic">Q. variabilis</span>; CK-V: well watered sample of <span class="html-italic">Q. variabilis</span>).</p> "> Figure 2
<p>Effects of drought stress and rewatering on relative water content and water potential of four oak species. (<b>A</b>), relative water content (<b>B</b>), water potential. DR-F: drought-rewatering sample of <span class="html-italic">Q. fabri</span>; CK-F: well watered sample of <span class="html-italic">Q. fabri</span>; DR-S: drought-rewatering sample of <span class="html-italic">Q. serrata</span>; CK-S: well watered sample of <span class="html-italic">Q. serrata</span>; DR-A: drought-rewatering sample of <span class="html-italic">Q. acutissima</span>; CK-A: well watered sample of <span class="html-italic">Q. acutissima</span>; DR-V: drought-rewatering sample of <span class="html-italic">Q. variabilis</span>; CK-V: well watered sample of <span class="html-italic">Q. variabilis</span>. Different lowercase letters indicate significant (<span class="html-italic">p</span> < 0.05) differences among the four oak species subjected to the same treatment time.</p> "> Figure 3
<p>Effects of drought stress and rewatering on osmotic solutes content of four oak species (<b>A</b>) soluble protein, (<b>B</b>) soluble sugar, (<b>C</b>) proline, (<b>D</b>) glycline betaine. DR-F: drought-rewatering sample of <span class="html-italic">Q. fabri</span>; CK-F: well watered sample of <span class="html-italic">Q. fabri</span>; DR-S: drought-rewatering sample of <span class="html-italic">Q. serrata</span>; CK-S: well watered sample of <span class="html-italic">Q. serrata</span>; DR-A: drought-rewatering sample of <span class="html-italic">Q. acutissima</span>; CK-A: well watered sample of <span class="html-italic">Q. acutissima</span>; DR-V: drought-rewatering sample of <span class="html-italic">Q. variabilis</span>; CK-V: well watered sample of <span class="html-italic">Q. variabilis</span>. Different lowercase letters indicate significant (<span class="html-italic">p</span> < 0.05) differences among the four oak species subjected to the same treatment time.</p> "> Figure 4
<p>Effects of drought stress and rewatering on antioxidant enzyme activities and malondialdehyde of four oak species. (<b>A</b>) peroxidase activity, (<b>B</b>) superoxide dismutase activity, (<b>C</b>) catalase activity, (<b>D</b>) malondialdehyde content. DR-F: drought-rewatering sample of <span class="html-italic">Q. fabri</span>; CK-F: well watered sample of <span class="html-italic">Q. fabri</span>; DR-S: drought-rewatering sample of <span class="html-italic">Q. serrata</span>; CK-S: well watered sample of <span class="html-italic">Q. serrata</span>; DR-A: drought-rewatering sample of <span class="html-italic">Q. acutissima</span>; CK-A: well watered sample of <span class="html-italic">Q. acutissima</span>; DR-V: drought-rewatering sample of <span class="html-italic">Q. variabilis</span>; CK-V: well watered sample of <span class="html-italic">Q. variabilis</span>. Different lowercase letters indicate significant (<span class="html-italic">p</span> < 0.05) differences among the four oak species subjected to the same treatment time.</p> "> Figure 5
<p>Effects of drought stress and rewatering on photosynthetic parameters of four oak species (<b>A</b>), net photosynthetic rate (<b>B</b>), transpiration rate (<b>C</b>), stomatal conductance. DR-F: drought-rewatering sample of <span class="html-italic">Q. fabri</span>; CK-F: well watered sample of <span class="html-italic">Q. fabri</span>; DR-S: drought-rewatering sample of <span class="html-italic">Q. serrata</span>; CK-S: well watered sample of <span class="html-italic">Q. serrata</span>; DR-A: drought-rewatering sample of <span class="html-italic">Q. acutissima</span>; CK-A: well watered sample of <span class="html-italic">Q. acutissima</span>; DR-V: drought-rewatering sample of <span class="html-italic">Q. variabilis</span>; CK-V: well watered sample of <span class="html-italic">Q. variabilis</span>. Different lowercase letters indicate significant (<span class="html-italic">p</span> < 0.05) differences among the four oak species subjected to the same treatment time.</p> "> Figure 6
<p>Principal component analysis of four oak species under continuous drought stress and rehydration conditions. DR-F: drought-rewatering sample of <span class="html-italic">Q. fabri</span>; CK-F: well watered sample of <span class="html-italic">Q. fabri</span>; DR-S: drought-rewatering sample of <span class="html-italic">Q. serrata</span>; CK-S: well watered sample of <span class="html-italic">Q. serrata</span>; DR-A: drought-rewatering sample of <span class="html-italic">Q. acutissima</span>; CK-A: well watered sample of <span class="html-italic">Q. acutissima</span>; DR-V: drought-rewatering sample of <span class="html-italic">Q. variabilis</span>; CK-V: well watered sample of <span class="html-italic">Q. variabilis</span>.</p> "> Figure 7
<p>Correlation analysis among 13 physiological and biochemical indexes of four oak species under continuous drought stress and rehydration conditions. Ψw: Water potential; RWC: Relative water content; Pro: proline; SS: soluble sugar; SP: soluble protein; GB: glycline betaine; SOD: superoxide dismutase; POD: peroxidase; CAT: catalase; MDA: malondialdehyde; Pn: net photosynthetic rate; Tr: transpiration rate; Gs: stomatal conductance. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Soil Moisture Content
2.2. Water Potential and RWC
2.3. Osmotic Solutes
2.4. Antioxidant Enzyme Activities and MDA
2.5. Photosynthetic Parameters
2.6. Multivariate Statistical Analysis
3. Discussion
3.1. Leaf Moisture Status
3.2. Osmotic Solutes
3.3. Antioxidant Enzyme Activities and MDA
3.4. Photosynthetic Parameters
3.5. Multivariate Statistical Analysis
4. Materials and Methods
4.1. Plant Material and Treatments
4.2. Leaf Relative Water Content and Water Potential
4.3. Measurements of Osmotic Solutes
4.4. Measurements of Antioxidant Enzyme Activity and Malondialdehyde (MDA) Content
4.5. Photosynthetic Parameters
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Li, R.; Geng, S. Impacts of climate change on agriculture and adaptive strategies in China. J. Integr. Agric. 2013, 12, 1402–1408. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Zhai, P.; Zhang, X.; Hui, W.; Pan, X. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Zhu, J. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef] [Green Version]
- Ben-Gal, A.; Agam, N.; Alchanatis, V.; Cohen, Y.; Yermiyahu, U.; Zipori, I.; Presnov, E.; Sprintsin, M.; Dag, A. Evaluating water stress in irrigated olives, correlation of soil water status, tree water status, and thermal imagery. Irrig. Sci. 2009, 27, 367–376. [Google Scholar] [CrossRef]
- Gechev, T.S.; Van Breusegem, F.; Stone, J.M.; Denev, I.; Laloi, C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 2006, 28, 1091–1101. [Google Scholar] [CrossRef]
- Huang, H.; Ullah, F.; Zhou, D.; Yi, M.; Zhao, Y. Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef]
- Ahmad, P.; Jaleel, C.A.; Salem, M.A.; Nabi, G.; Sharma, S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010, 30, 161–175. [Google Scholar] [CrossRef]
- Anjum, S.A.; Xie, X.Y.; Wang, L.C.; Saleem, M.F.; Man, C.; Lei, W. Morphological, physiological and biochemical responses of plants to drought stress. Afric. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar]
- Bai, X.N.; Hao, H.; Hu, Z.H.; Leng, P.S. Ectomycorrhizal Inoculation Enhances the Salt Tolerance of Quercus mongolica Seedlings. Plants 2021, 10, 1790. [Google Scholar] [CrossRef] [PubMed]
- Granda, V.; Delatorre, C.; Cuesta, C.; Centeno, M.L.; Fernández, B.; Rodríguez, A.; Feito, I. Physiological and biochemical responses to severe drought stress of nine Eucalyptus globulus clones: A multivariate approach. Tree Physiol. 2014, 34, 778–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seki, M.; Umezawa, T.; Urano, K.; Shinozaki, K. Regulatory metabolic networks in drought stress responses. Curr. Opin. Plant Biol. 2007, 10, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. Lond. 2009, 103, 551–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruskopf, M.; Flynn, K.J. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol. 2006, 169, 525–536. [Google Scholar] [CrossRef]
- Li, R.; Guo, P.; Michael, B.; Stefania, G.; Salvatore, C. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric. Sci. China 2006, 5, 751–757. [Google Scholar] [CrossRef]
- Medina, E.; Garcia, V.; Cuevas, E. Sclerophylly and oligotrophic environments: Relationships between leaf structure, mineral nutrient content, and drought resistance in tropical rain forests of the upper Rio Negro region. Biotropica 1990, 22, 51–64. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Lei, Y.; Yin, C.; Li, C. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol. Plant 2006, 127, 182–191. [Google Scholar] [CrossRef]
- Baghalian, K.; Abdoshah, S.; Khalighi-Sigaroodi, F.; Paknejad, F. Physiological and phytochemical response to drought stress of German chamomile (Matricaria recutita L.). Plant Physiol. Biochem. 2011, 49, 201–207. [Google Scholar] [CrossRef]
- Toscano, S.; Farieri, E.; Ferrante, A.; Romano, D. Physiological and biochemical responses in two ornamental shrubs to drought stress. Front. Plant Sci. 2016, 7, 645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, C.; Peng, Y.; Zang, R.; Zhu, Y.; Li, C. Adaptive responses of Populus kangdingensis to drought stress. Physiol. Plantarum. 2005, 123, 445–451. [Google Scholar] [CrossRef]
- Rivest, D.; Lorente, M.; Olivier, A.; Messier, C. Soil biochemical properties and microbial resilience in agroforestry systems: Effects on wheat growth under controlled drought and flooding conditions. Sci. Total Environ. 2013, 463, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Hu, Y.; Buttar, N.A. Analysis of mechanical properties for tea stem using grey relational analysis coupled with multiple linear regression. Sci. Hortic. 2020, 260, 108886. [Google Scholar] [CrossRef]
- Gallé, A.; Feller, U. Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery. Physiol. Plant 2007, 131, 412–421. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, Y.; Zhou, X.; Yang, S.; Li, C. Evaluating water consumption based on water hierarchy structure for sustainable development using grey relational analysis: Case study in Chongqing, China. Sustainability 2018, 10, 1538. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Luo, Q.; Tian, Y.; Meng, F. Physiological and proteomic analyses of the drought stress response in Amygdalus Mira (Koehne) Yü et Lu roots. BMC Plant Biol. 2017, 17, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Jacques, C.; Salon, C.; Barnard, R.L.; Vernoud, V.; Prudent, M. Drought Stress Memory at the Plant Cycle Level: A Review. Plants 2021, 10, 1873. [Google Scholar] [CrossRef]
- Lu, Y.; Hao, Z.; Xie, C.; Crossa, J.; Araus, J.; Gao, S.; Vivek, B.S.; Magorokosho, C.; Mugo, S.; Makumbi, D.; et al. Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crops Res. 2011, 124, 37–45. [Google Scholar] [CrossRef]
- Ditmarová, L.; Kurjak, D.; Palmroth, S.; Kmeť, J. Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiol. 2010, 30, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Vázquez, L.; Feng, L.; Liu, Z.; Zhao, G. Climatic and soil factors shape the demographical history and genetic diversity of a deciduous Oak (Quercus liaotungensis) in Northern China. Front. Plant Sci. 2018, 9, 1534. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Dong, Y.; Yu, M.; Geoff Wang, G.; Zeng, D. Leaf nitrogen and phosphorus stoichiometry of Quercus species across China. For. Ecol. Manag. 2012, 284, 116–123. [Google Scholar] [CrossRef]
- Xiong, S.; Zhao, Y.; Chen, Y.; Gao, M.; Wu, L.; Wang, Y. Genetic diversity and population structure of Quercus fabri Hance in China revealed by genotyping-by-sequencing. Ecol. Evol. 2020, 10, 8949–8958. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Shi, W.; Wu, Y.; Ji, J.; Feng, J.; Zhao, J.; Shi, X.; Du, C.; Chen, W.; Liu, J.; et al. Variations in Acorn Traits in Two Oak Species: Quercus mongolica Fisch. ex Ledeb. and Quercus variabilis Blume. Forests 2021, 12, 1755. [Google Scholar] [CrossRef]
- Silva, S.; Costa, E.M.; Borges, A.; Carvalho, A.P.; Monteiro, M.J.; Pintado, M.M.E. Nutritional characterization of acorn flour (a traditional component of the Mediterranean gastronomical folklore). J. Food Meas. Charact. 2016, 10, 584–588. [Google Scholar] [CrossRef]
- Marc, R.A.; Niculae, M.; Páll, E.; Mureșan, V.; Mureșan, A.; Tanislav, A.; Pușcaș, A.; Mureșan, C.C.; Cerbu, C. Red Oak (Quercus rubra L.) Fruits as Potential Alternative for Cocoa Powder: Optimization of Roasting Conditions, Antioxidant, and Biological Properties. Forests 2021, 12, 1088. [Google Scholar] [CrossRef]
- Makhlouf, F.Z.; Squeo, G.; Difonzo, G.; Faccia, M.; Pasqualone, A.; Summo, C.; Malika, B.; Francesco, C. Effects of storage on the oxidative stability of acorn oils extracted from three different Quercus species. J. Sci. Food Agric. 2021, 101, 131–138. [Google Scholar] [CrossRef]
- Li, H.J.; Zhang, Z.B. Effect of rodents on acorn dispersal and survival of the Liaodong oak (Quercus liaotungensis Koidz.). For. Ecol. Manag. 2003, 176, 387–396. [Google Scholar] [CrossRef]
- Yang, J.; Di, X.; Meng, X.; Feng, L.; Liu, Z.; Zhao, G. Phylogeography and evolution of two closely related oak species (Quercus) from north and northeast China. Tree Genet. Genomes 2016, 12, 1–14. [Google Scholar] [CrossRef]
- Xiu, W.Y.; Zhu, Y.; Chen, B.; Hu, Y.; Dawuda, M.M. Effects of paclobutrazol on the physiological characteristics of Malus halliana Koehne Seedlings under drought stress via principal component analysis and membership function analysis. Arid Land Res. Manag. 2019, 33, 97–113. [Google Scholar] [CrossRef]
- Ritchie, S.W.; Nguyen, H.T.; Holaday, A.S. Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci. 1990, 30, 105–111. [Google Scholar] [CrossRef]
- Schonfeld, M.A.; Johnson, R.C.; Carver, B.F.; Mornhinweg, D.W. Water relations in winter wheat as drought resistance indicators. Crop Sci. 1988, 28, 526–531. [Google Scholar] [CrossRef]
- Du, Y.; Zhao, Q.; Chen, L.; Yao, X.; Zhang, W.; Zhang, B.; Xie, F. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol. Biochem. 2020, 146, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Upreti, P.; Narayan, S.; Khan, F.; Tewari, L.M.; Shirke, P.A. Drought-induced responses on physiological performance in cluster bean [Cyamopsis tetragonoloba (L.) Taub.]. Plant Physiol. Rep. 2021, 26, 49–63. [Google Scholar] [CrossRef]
- Xiong, L.; Zhu, J.K. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 2002, 25, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Wang, Y.; Yu, S.; Huang, Y.; Liu, H.; Chen, W.; He, X. Effects of drought stress on growth, physiology and secondary metabolites of two adonis species in Northeast China. Sci. Hortic. 2020, 259, 108795. [Google Scholar] [CrossRef]
- Cheng, L.; Han, M.; Yang, L.M.; Yang, L.; Sun, Z.; Zhang, T. Changes in the physiological characteristics and baicalin biosynthesis metabolism of Scutellaria baicalensis Georgi under drought stress. Ind. Crops Prod. 2018, 122, 473–482. [Google Scholar] [CrossRef]
- Okunlola, G.O.; Olatunji, O.A.; Akinwale, R.O.; Tariq, A.; Adelusi, A.A. Physiological response of the three most cultivated pepper species (Capsicum spp.) in Africa to drought stress imposed at three stages of growth and development. Sci. Hortic. 2017, 224, 198–205. [Google Scholar] [CrossRef]
- Quan, R.; Shang, M.; Zhang, H.; Zhao, Y.; Zhang, J. Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol. J. 2004, 2, 477–486. [Google Scholar] [CrossRef]
- Räsänen, L.A.; Saijets, S.; Jokinen, K.; Lindström, K. Evaluation of the roles of two compatible solutes, glycine betaine and trehalose, for the Acacia Senegal-Sinorhizobium symbiosis exposed to drought stress. Plant Soil 2004, 260, 237–251. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, L.; Lai, J.; Zhao, H.; Song, W. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biol. 2018, 18, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Shawon, R.A.; Kang, B.S.; Lee, S.G.; Kim, S.K.; Lee, H.J.; Katrich, E.; Gorinstein, S.; Ku, Y.G. Influence of drought stress on bioactive compounds, antioxidant enzymes and glucosinolate contents of Chinese cabbage (Brassica rapa). Food Chem. 2020, 308, 125657. [Google Scholar] [CrossRef] [PubMed]
- Leng, X.; Xue, L.; Wang, J.; Li, S.; Yang, Z.; Ren, H.; Yao, X.; Wu, Z.; Li, J. Physiological responses of Handeliodendron bodinieri (Levl.) Rehd. to exogenous calcium supply under drought stress. Forests 2020, 11, 69. [Google Scholar] [CrossRef] [Green Version]
- Denaxa, N.; Damvakaris, T.; Roussos, P.A. Antioxidant defense system in young olive plants against drought stress and mitigation of adverse effects through external application of alleviating products. Sci. Hortic. 2020, 259, 108812. [Google Scholar] [CrossRef]
- Xiong, C.; Zhao, S.; Yu, X.; Sun, Y.; Li, H.; Ruan, C.; Li, J. Yellowhorn drought-induced transcription factor XsWRKY20 acts as a positive regulator in drought stress through ROS homeostasis and ABA signaling pathway. Plant Physiol. Biochem. 2020, 155, 187–195. [Google Scholar] [CrossRef]
- Fang, Y.; Xiong, L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci. 2015, 72, 673–689. [Google Scholar] [CrossRef]
- Sapes, G.; Sala, A. Relative water content consistently predicts drought mortality risk in seedling populations with different morphology, physiology and times to death. Plant Cell Environ. 2021, 44, 3322–3335. [Google Scholar] [CrossRef]
Measured Index | Principal Component | |
---|---|---|
PC1 | PC2 | |
Relative water content | 0.335 | −0.014 |
Water potential | 0.326 | 0.018 |
Soluble sugar | −0.174 | 0.365 |
Soluble protein | 0.276 | 0.084 |
Glycine betaine | −0.309 | −0.134 |
Pro | −0.322 | 0.099 |
SOD | −0.083 | 0.551 |
POD | 0.150 | 0.447 |
CAT | −0.142 | 0.540 |
MDA | −0.311 | −0.176 |
Pn | 0.331 | 0.041 |
Gs | 0.334 | 0.045 |
Tr | 0.328 | −0.024 |
Eigenvalue | 8.352 | 2.562 |
Cumulative contribution rate (%) | 64.24 | 83.94 |
Item | Q. fabri | Q. serrata | Q. acutissima | Q. variabilis |
---|---|---|---|---|
Relative water content | 0.3340 | 0.2399 | 0.2314 | 0.2325 |
Water potential | 0.4529 | 0.5773 | 0.4193 | 0.3608 |
Soluble sugar | 0.3002 | 0.2288 | 0.3272 | 0.2844 |
Soluble protein | 0.0900 | 0.0883 | 0.0863 | 0.0823 |
Pro | 0.1980 | 0.2321 | 0.3348 | 0.3919 |
SOD | 0.0777 | 0.1053 | 0.0780 | 0.1094 |
POD | 0.1384 | 0.0909 | 0.1013 | 0.0920 |
CAT | 0.1125 | 0.1110 | 0.1236 | 0.1305 |
MDA | 0.4770 | 0.5235 | 0.4702 | 0.5055 |
Pn | 0.4322 | 0.4225 | 0.4932 | 0.5193 |
Gs | 0.4354 | 0.4725 | 0.5329 | 0.4984 |
Tr | 0.3608 | 0.3990 | 0.3285 | 0.3118 |
Comprehensive evaluation | 0.2900 | 0.2983 | 0.2817 | 0.2819 |
Sequencing | 2 | 1 | 4 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, S.; Wang, Y.; Chen, Y.; Gao, M.; Zhao, Y.; Wu, L. Effects of Drought Stress and Rehydration on Physiological and Biochemical Properties of Four Oak Species in China. Plants 2022, 11, 679. https://doi.org/10.3390/plants11050679
Xiong S, Wang Y, Chen Y, Gao M, Zhao Y, Wu L. Effects of Drought Stress and Rehydration on Physiological and Biochemical Properties of Four Oak Species in China. Plants. 2022; 11(5):679. https://doi.org/10.3390/plants11050679
Chicago/Turabian StyleXiong, Shifa, Yangdong Wang, Yicun Chen, Ming Gao, Yunxiao Zhao, and Liwen Wu. 2022. "Effects of Drought Stress and Rehydration on Physiological and Biochemical Properties of Four Oak Species in China" Plants 11, no. 5: 679. https://doi.org/10.3390/plants11050679
APA StyleXiong, S., Wang, Y., Chen, Y., Gao, M., Zhao, Y., & Wu, L. (2022). Effects of Drought Stress and Rehydration on Physiological and Biochemical Properties of Four Oak Species in China. Plants, 11(5), 679. https://doi.org/10.3390/plants11050679