Exploring Microelement Fertilization and Visible–Near-Infrared Spectroscopy for Enhanced Productivity in Capsicum annuum and Cyprinus carpio Aquaponic Systems
<p>Average root length, weight, and yield of cultivated pepper.</p> "> Figure 2
<p>Average reflectance spectra of pepper leaves in the visible–short wave NIR region.</p> "> Figure 3
<p>Discriminating power plot of SIMCA models for the discrimination of control of differently treated pepper plants.</p> "> Figure 4
<p>Schematic of experimental aquaponic system. (A) Fish tanks, (B) mechanical filter, (C) biofilter, (D) sump, and (E) plant section. Black arrows show the path of water.</p> "> Figure 5
<p>Image of experimental greenhouse used in current trial.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Growth Parameters in Fish C. carpio
2.2. Hydrochemical Parameters
2.3. Growth Parameters in Cultivated Plants
2.4. Macro- and Microelements
2.5. Spectral Characteristics of Tested Plants and SIMCA Classifications
3. Materials and Methods
3.1. Experimental Aquaponic System
3.2. Experimental Fish and Plants
3.3. Determination of Hydrochemical Parameters
3.4. Determination of Macro- and Microelements
- ➢
- Total N—based on Dumas method N11 using LECO CNS analyzer, as described by Culmo (2010) [69].
- ➢
- Boron, calcium, copper, iron, potassium, magnesium, manganese, molybdenum, phosphorus, sulfur, zinc—method 1.17 using microwave digestion with nitric acid; analysis by ICP-OES, as described by Kane et al. (2006) [70].
3.5. Spectral Measurements
3.6. Multivariate Data Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Obirikorang, K.A.; Sekey, W.; Gyampoh, B.A.; Ashiagbor, G.; Asante, W. Aquaponics for improved food security in Africa: A review. Front. Sustain. Food Syst. 2021, 5, 705549. [Google Scholar] [CrossRef]
- Rakocy, J.E.; McGinty, A.S. Island Perspectives; Virgin Islands Agricultural Experiment Station: Saint Croix, VI, USA, 1989; pp. 5–10. [Google Scholar]
- Deswati, S.; Isara, L.P.; Pardi, H. Hydroton-biofloc-based aquaponics (hydroton flocponics): Towards good water quality and macro-micro nutrient. Bioflux 2021, 14, 5. [Google Scholar]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.V.; Jijakli, H.; Thorarinsdottir, R. Challenges of sustainable and commercial aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef]
- Resh, H.M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Rakocy, J.E.; Shultz, R.C.; Bailey, D.S.; Thoman, E.S. Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system. Acta Hortic. 2004, 648, 63–69. [Google Scholar] [CrossRef]
- Damon, E.; Seawright, R.B.; Walker, R.R.S. Nutrient dynamics in integrated aquaculture hydroponics systems. Aquaculture 1998, 160, 215–237. [Google Scholar]
- Baganz, G.F.; Schrenk, M.; Körner, O.; Baganz, D.; Keesman, K.J.; Goddek, S.; Siscan, Z.; Baganz, E.; Doernberg, A.; Monsees, H.; et al. Causal relations of upscaled urban aquaponics and the Food-Water-Energy Nexus—A Berlin case study. Water 2021, 13, 2029. [Google Scholar] [CrossRef]
- Anderson, T.S.; De Villiers, D.; Timmons, M.B. Growth and tissue elemental composition response of butterhead lettuce (Lactuca sativa, cv. Flandria) to hydroponic and aquaponic conditions. Horticulturae 2017, 3, 43. [Google Scholar] [CrossRef]
- Delaide, B.; Delhaye, G.; Dermience, M.; Gott, J.; Soyeurt, H.; Jijakli, M.H. Plant and fish production performance, nutrient mass balances, energy and water use of the PAFF Box, a small-scale aquaponic system. Aquac. Eng. 2017, 78, 130–139. [Google Scholar] [CrossRef]
- Guzel, S.; Odun, U.C.; Cakmakci, T.; Cakmakci, O.; Sahin, U. The effect of cucumber (Cucumis sativus) cultivation in aquaponic and hydroponic systems on plant nutrient elements and antioxidant enzyme activity. Frese. Environ. Bull. 2018, 27, 553–558. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20183049613/ (accessed on 10 November 2024).
- Luo, X.L.; Rauan, A.; Xing, J.X.; Sun, J.; Wu, W.Y.; Ji, H. Influence of dietary Se supplementation on aquaponic system: Focusing on the growth performance, ornamental features and health status of Koi carp (Cyprinus carpio var. Koi), production of Lettuce (Lactuca sativa) and water quality. Aquac. Res. 2021, 52, 505–517. [Google Scholar] [CrossRef]
- Cifuentes-Torres, L.; Correa-Reyes, G.; Mendoza-Espinosa, L.G. Can reclaimed Water be used for sustainable Food production in Aquaponics? Front. Plant Sci. 2021, 12, 669984. [Google Scholar] [CrossRef] [PubMed]
- Kasozi, N.; Tandlich, R.; Fick, M.; Kaiser, H.; Wilhelmi, B. Iron supplementation and management in aquaponic systems: A review. Aquac. Rep. 2019, 15, 100221. [Google Scholar] [CrossRef]
- Aslanidou, M.; Elvanidi, A.; Mourantian, A.; Levizou, E.; Mente, E.; Katsoulas, N. Nutrients Use Efficiency in Coupled and Decoupled Aquaponic Systems. Horticulturae 2023, 9, 1077. [Google Scholar] [CrossRef]
- Roosta, H.R.; Mohsenian, Y. Effects of foliar spray of different Fe sources on pepper (Capsicum annum L.) plants in aquaponic system. Sci. Hortic. 2012, 146, 182–191. [Google Scholar] [CrossRef]
- Saseendran, S.; Dube, K.; Chandrakant, H.M.; Babitha Rani, M.A. Enhanced growth response and stress mitigation of genetically improved farmed Tilapia in a biofloc integrated aquaponic system with bell pepper. Aquaculture 2021, 533, 736200. [Google Scholar] [CrossRef]
- Sirakov, I.; Velichkova, K.; Slavcheva-Sirakova, D. Theproviotic® supplemented diet on growth performance, biochemical blood parameters and meat quality of common carp (Cyprinus carpio L.) and growth of lettuce (Lactuca sativa) cultivated in aquaponics. Hyg. Eng. Des. 2021, 34, 26–30. [Google Scholar]
- Asadi, M.; Harsij, M.; Adineh, H.; Gholizadeh, M.; Moazami, N. Evaluation of growth performance, digestive enzyme activity, immune and antioxidant parameters of Common carp (Cyprinus carpio L.) juveniles reared in aquaponic system. J. Appl. Ichthyol. Res. 2021, 9, 31–40. Available online: https://jair.gonbad.ac.ir/browse.php?a_id=737&sid=1&slc_lang=en. (accessed on 10 November 2024).
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Kuska, M.T.; Behmann, J.; Polder, G.; Walter, A. Hyperspectral Sensors and Imaging Technologies in Phytopathology: State of the Art. Annu. Rev. Phytopathol. 2018, 56, 535–558. [Google Scholar] [CrossRef]
- Pacumbaba, R.O., Jr.; Beyl, C.A. Changes in hyperspectral reflectance signatures of lettuce leaves in response to macronutrient deficiencies. Adv. Space Res. 2021, 48, 32–42. [Google Scholar] [CrossRef]
- Falcioni, R.; Gonçalves, J.V.F.; de Oliveira, K.M.; de Oliveira, C.A.; Reis, A.S.; Crusiol, L.G.T.; Furlanetto, R.H.; Antunes, W.C.; Cezar, E.; de Oliveira, R.B.; et al. Chemometric Analysis for the Prediction of Biochemical Compounds in Leaves Using UV-VIS-NIR-SWIR Hyperspectroscopy. Plants 2023, 12, 3424. [Google Scholar] [CrossRef]
- Zahir, S.A.D.M.; Jamlos, M.F.; Omar, A.F.; Jamlos, M.A.; Mamae, R.; Muncan, J.; Tsenkova, R. Review—Plant nutritional status analysis employing the visible and near-infrared spectroscopy spectral sensor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 304, 123273. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Ye, Y.; Wei, L.; Yang, X.; Huang, C. Study on the Optimization of Hyperspectral Characteristic Bands Combined with Monitoring and Visualization of Pepper Leaf SPAD Value. Sensors 2022, 22, 183. [Google Scholar] [CrossRef]
- Sulok, K.M.T.A.; Ganie, A.T.H.; Ee, K.P.; Mee, W.C.; Shang, C.Y.; Mercr, Z.J.A.; Haruna, A.O.; Suhaili, A. Foliar Spectral Signature Analysis of Three Pepper (Piper nigrum L.) Cultivars in Malaysia. J. Trop. Plant Physiol. 2023, 15, 13–23. [Google Scholar] [CrossRef]
- De Souza, R.; Peña-Fleitas, M.T.; Thompson, R.B.; Gallardo, M.; Padilla, F.M. Assessing Performance of Vegetation Indices to Estimate Nitrogen Nutrition Index in Pepper. Remote Sens. 2020, 12, 763. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A. Crop reflectance indices for mapping water stress in greenhouse-grown bell Pepper. Agric. Water Manag. 2019, 219, 49–58. [Google Scholar] [CrossRef]
- Herrmann, I.; Berenstein, M.; Paz-Kagan, T.; Sade, A.; Karnieli, A. Spectral assessment of two-spotted spider mite damage levels in the leaves of greenhouse-grown pepper and bean. Biosyst. Eng. 2017, 157, 72–85. [Google Scholar] [CrossRef]
- Taha, M.F.; Abdalla, A.; ElMasry, G.; Gouda, M.; Zhou, L.; Zhao, N.; Liang, N.; Niu, Z.; Hassanein, A.; Al-Rejaie, S.; et al. Using Deep Convolutional Neural Network for Image-Based Diagnosis of Nutrient Deficiencies in Plants Grown in Aquaponics. Chemosensors 2022, 10, 45. [Google Scholar] [CrossRef]
- Taha, M.F.; ElManawy, A.I.; Alshallash, K.S.; ElMasry, G.; Alharbi, K.; Zhou, L.; Liang, N.; Qiu, Z. Using Machine Learning for Nutrient Content Detection of Aquaponics-Grown Plants Based on Spectral Data. Sustainability 2022, 14, 12318. [Google Scholar] [CrossRef]
- Taha, M.F.; Mao, H.; Wang, Y.; ElManawy, A.I.; Elmasry, G.; Wu, L.; Memon, M.S.; Niu, Z.; Huang, T.; Qiu, Z. High-Throughput Analysis of Leaf Chlorophyll Content in Aquaponically Grown Lettuce Using Hyperspectral Reflectance and RGB Images. Plants 2024, 13, 392. [Google Scholar] [CrossRef] [PubMed]
- Dalzell, D.J.B.; Macfarlane, N.A.A. The toxicity of iron to brown trout and effects on the gills: A comparison of two grades of iron sulphate. J. Fish Biol. 1999, 55, 301–315. [Google Scholar] [CrossRef]
- Bury, N.; Grosell, M. Iron acquisition by teleost fish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2003, 135, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Phippen, B.; Horvath, C.; Nordin, R.; Nagpal, N. Ambient Water Quality Guidelines for Iron. In Prepared for Science and Information Branch; Water Stewardship Division: Ministry of Environment: Madrid, Spain, 2008; p. 45. [Google Scholar]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovetelli, A. Small-Scale Aquaponic Food Production: Integrated Fish and Plant Farming; FAO Fisheries and Aquaculture Technical Paper 589; FAO: Rome, Italy, 2014; 288p. [Google Scholar]
- Mega, M.R. Analysis of heavy metal content of zinc (Zn) and copper (Cu) in tilapia and waters of Cirata Purwakarta, West Java. Ph.D. Thesis, Bogor Agricultural University, Bogor, Indonesia, 2013; 134p. (In Indonesian). [Google Scholar]
- Afshan, S.; Ali, S.; Ameen, U.S.; Farid, M.; Bharwana, S.A.; Hannan, F.; Rehan, A. Effect of different heavy metal pollution on fish. Res. J. Chem. Environ. Sci. 2014, 2, 74–79. [Google Scholar]
- Ulya, N.; Yusuf, Y.; Tetra, O.N.; Edelwis, T.W.; Pardi, H. Improvement of water quality (Cu, Fe, Zn) in biofloc aquaponics systems by utilizing fish waste as a source of micronutrients. AACL Bioflux 2021, 14, 3440–3449. [Google Scholar]
- Atique, F.; Pirhonen, J. Is Aquaponics Beneficial in Terms of Fish and Plant Growth and Water Quality in Comparison to Separate Recirculating Aquaculture and Hydroponic Systems? Water 2021, 14, 1447. [Google Scholar] [CrossRef]
- Wortman, S.E. Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci. Hortic. 2015, 194, 34–42. [Google Scholar] [CrossRef]
- Estrada-Perez, N.; Hernandez-Llamas, A.; Ruiz-Velazco, M.J.; Zavala-Leal, I.; Romero-Bañuelos, C.A.; Cruz-Crespo, E.; Juárez-Rossete, C.; Domínguez-Ojeda, D.; Campos-Mendoza, A. Stochastic Modelling of Aquaponic Production of Tilapia (Oreochromis niloticus) with Lettuce (Lactuca sativa) and Cucumber (Cucumis sativus). Aquac. Res. 2018, 49, 3723–3734. [Google Scholar] [CrossRef]
- Tyson, R.V.; Simonne, E.H.; Davis, M.; Lamb, E.M.; White, J.M.; Treadwell, D.D. Effect of nutrient solution, nitrate-nitrogen concentration, and pH on nitrification rate in perlite medium. J. Plant Nutr. 2007, 30, 901–913. [Google Scholar] [CrossRef]
- Tyson, R.V.; Simonne, E.H.; Treadwell, D.D.; Davis, M.; White, J.M. Effect of water pH on yield and nutritional status of greenhouse cucumber grown in recirculating hydroponics. Plant Nutr. 2008, 31, 2018–2030. [Google Scholar] [CrossRef]
- Tyson, R.V.; Treadwell, D.D.; Simonne, E.H. Opportunities and challenges to sustainability in aquaponic systems. HortTechnology 2011, 21, 6–13. [Google Scholar] [CrossRef]
- Tyson, R.V.; Simonne, E.H.; White, J.M.; Lamb, E.M. Reconciling water quality parameters impacting nitrification in aquaponics: The pH levels. Proc. Fla. State Hort. Soc. 2004, 117, 79–83. [Google Scholar]
- Anando, D.A.; Andriani, Y.; Hamdani, H.; Zahidah, Z. Effect of Oxygen Supply on Productivity in Aquaponics System. World Sci. News. 2022, 171, 82–96. [Google Scholar]
- Randall, D.J.; Tsui, T.K.N. Ammonia toxicity in fish. Mar. Pollut. Bull. 2002, 45, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Ip, Y.K.; Chew, S.F. Ammonia production, excretion, toxicity, and defense in fish: A review. Front. Physiol. 2010, 1, 134. [Google Scholar] [CrossRef] [PubMed]
- Ip, Y.K.; Chew, S.F.; Randall, D.J. Ammonia toxicity, tolerance, and excretion. Fish Physiol. 2001, 20, 109–148. [Google Scholar] [CrossRef]
- Molayemraftar, T.; Peyghan, R.; Jalali, M.R.; Shahriari, A. Single and combined effects of ammonia and nitrite on common carp, Cyprinus carpio: Toxicity, hematological parameters, antioxidant defenses, acetylcholinesterase, and acid phosphatase activities. Aquaculture 2022, 548, 737676. [Google Scholar] [CrossRef]
- Holan, A.B.; Good, C.; Powell, M.D. Health management in recirculating aquaculture systems (RAS). In Aquaculture Health Management; Academic Press: Cambridge, MA, USA, 2020; pp. 281–318. [Google Scholar] [CrossRef]
- Andrews, M.; Raven, J.A.; Lea, P.J. Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann. Appl. Biol. 2013, 163, 174–199. [Google Scholar] [CrossRef]
- Wongkiew, S.; Hu, Z.; Chandran, K.; Lee, J.W.; Khanal, S.K. Nitrogen transformations in aquaponic systems: A review. Aquacult. Eng. 2017, 76, 9–19. [Google Scholar] [CrossRef]
- Yang, T.; Kim, H.J. Comparisons of nitrogen and phosphorus mass balance for tomato-, basil-, and lettuce-based aquaponic and hydroponic systems. J. Clean. Prod. 2020, 274, 122619. [Google Scholar] [CrossRef]
- Malhotra, H.; Vandana Sharma, S.; Pandey, R. Phosphorus nutrition: Plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2018; pp. 171–190. Available online: https://link.springer.com/chapter/10.1007/978-981-10-9044-8_7 (accessed on 10 November 2024).
- Salim, B.B.M.; El-Gawad, A.; Gamal, H.; El-Yazied, A.; Hikal, M. Effect of calcium and boron on growth, fruit setting and yield of hot pepper (Capsicum annuum L.). Egypt. J. Hortic. 2019, 46, 53–62. [Google Scholar] [CrossRef]
- Yasuor, H.; Firer, M.; Beit-Yannai, E. Protective structures and manganese amendments effects on antioxidant activity in pepper fruit. Sci. Hortic. 2015, 185, 211. [Google Scholar] [CrossRef]
- Ciganda, V.; Gitelson, A.; Schepers, J. Non-destructive determination of maize leaf and canopy chlorophyll content. J. Plant Physiol. 2009, 166, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Guerinot, M.L. Homing in on iron homeostasis in plants. Trends Plant Sci. 2009, 14, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.F.; Yamaji, N.; Shen, R.F.; Ma, J.F. The key to Mn homeostasis in plants: Regulation of Mn transporters. Trends Plant Sci. 2017, 22, 215–224. [Google Scholar] [CrossRef]
- Hell, R.; Stephan, U.W. Iron uptake, trafficking and homeostasis in plants. Planta 2003, 216, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, F.B.; Ross, C.W. Plant Physiology, 4th ed.; Wadsworth Publishing Company: Belmont, CA, USA, 1992. [Google Scholar]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef] [PubMed]
- Kaburagi, E.; Yamada, M.; Baba, T.; Fujiyama, H.; Murillo-Amador, B.; Yamada, S. Aquaponics using saline groundwater: Effect of adding microelements to fish wastewater on the growth of Swiss chard (Beta vulgaris L. spp. Cicla). Agric. Water Manag. 2020, 227, 105851. [Google Scholar] [CrossRef]
- Steidle Neto, A.J.; Moura, L.D.O.; Lopes, D.D.C.; Carlos, L.D.A.; Martins, L.M.; Ferraz, L.D.C.L. Non-destructive prediction of pigment content in lettuce based on visible NIR spectroscopy. J. Sci. Food Agric. 2017, 97, 2015–2022. [Google Scholar] [CrossRef]
- Sonobe, R.; Hirono, Y.; Oi, A. Non-destructive detection of tea leaf chlorophyll content using hyperspectral reflectance and machine learning algorithms. Plants 2020, 9, 368. [Google Scholar] [CrossRef] [PubMed]
- Hach. DR 2800, USER MANUAL, 08/2013, Edition 4. 2013. Available online: https://au.hach.com/asset-get.download.jsa?id=7639982256&srsltid=AfmBOorrUHJs2dIH5dQYfJPyGKNeC3owe0mHd6d4k9GhduGsvYCjIxFa (accessed on 10 November 2024).
- Culmo, R.F. Methods of Organic Nitrogen Analysis: Kjeldahl and the EA2410 N Analyzer (Dumas Method); PerkinElmer Publication: Washington, DC, USA, 2010. [Google Scholar]
- Kane, P.F.; Hall, W.L., Jr.; Bartos, J.; Boles, R.; Dupuis, M.; Hasty, E.; Kinsey, C.; Mullins, S.; Newlon, N.; Purkiss, J.; et al. Determination of arsenic, cadmium, cobalt, chromium, lead, molybdenum, nickel, and selenium in fertilizers by microwave digestion and inductively coupled plasma-optical emission spectrometry detection: Collaborative study. J. AOAC Int. 2006, 89, 1447–1466. [Google Scholar] [CrossRef] [PubMed]
Parameters | |
---|---|
Average initial weight (kg) | 0.256 |
Average final weight (kg) | 0.388 |
Survival (%) | 100 |
SGR (%) | 2.67 ± 0.11 |
FCR | 1.56 |
Control | v-2 | v-4 | v-6 | |
---|---|---|---|---|
Conductivity | 271.66 ± 2.07 | 297.66 ± 14.12 | 272 ± 1.61 | 271.66 ± 1.47 |
pH | 7.33 ± 0.05 | 7.28 ± 0.07 | 7.31 ± 0.03 | 7.31 ± 0.07 |
Dissolved oxygen | 6.17 ± 0.6 | 6.88 ± 0.56 | 6.56 ± 0.51 | 6.58 ± 0.70 |
Control | v-2 | v-4 | v-6 | |
---|---|---|---|---|
Ammonium nitrogen (NH4+) | 0.24 ± 0.02 | 0.144 ± 0.01 * | 0.18 ± 0.01 | 0.26 ± 0.008 |
Nitrite (NO2−) | 0.18 ± 0.8 | 0.26 ± 0.12 | 0.22 ± 0.14 | 0.26 ± 0.12 |
Nitrate (NO3−) | 8.06 ± 3.31 | 5.56 ± 1.90 | 4.18 ± 0.64 ** | 4.52 ± 0.99 * |
Orthophosphate (HPO42−) | 2.80 ± 0.43 | 2.48 ± 0.27 | 2.45 ± 0.21 | 2.31 ± 0.16 * |
к | v-2 | v-4 | v-6 | |
---|---|---|---|---|
Nitrogen (N) | 4.575 ± 0.08 | 4.120 ± 1.40 | 4.237 ± 1.05 | 4.175 ± 1.14 |
Phosphorus (P) | 0.280 ± 0.04 | 0.225 ± 0.12 | 0.235 ± 0.09 | 0.225 ± 0.09 |
Potassium (K) | 2.555 ± 0.43 | 4.045 ± 0.49 | 4.253 ± 0.77 | 3.533 ± 0.71 |
Calcium (Ca) | 4.355 ± 0.22 | 3.840 ± 1.64 | 4.048 ± 1.17 | 4.028 ± 0.99 |
Magnesium (Mg) | 0.640 ± 0.01 | 0.760 ± 0.325 | 0.780 ± 0.25 | 0.70 ± 0.24 |
Manganese (Mn) | 131.45 ± 5.87 a | 326.10 ± 73.96 a | 322.10 ± 46.89 a | 367.05 ± 80.30 a |
Borum (B) | 36.70 ± 4.38 a | 41.85 ± 0.49 | 49.85 ± 4.52 a | 46.475 ± 3.32 |
Cuprum (Cu) | 5.55 ± 0.78 | 4.80 ± 1.70 | 5.176 ± 1.36 | 4.575 ± 0.99 |
Molybdenum (Mo) | 4.035 ± 0.58 | 5.02 ± 2.99 | 5.158 ± 2.12 | 6.055 ± 2.74 |
Ferrum (Fe) | 68.0 ± 4.24 a | 78.0 ± 9.90 | 81.75 ± 1.50 a | 75.25 ± 7.36 |
Sulfur (S) | 0.435 ± 0.04 | 0.37 ± 0.13 | 0.388 ± 0.09 | 0.383 ± 0.11 |
Zinc (Zn) | 100.8 ± 2.83 a | 78.45 ± 10.39 a | 90.85 ± 12.35 | 78.95 ± 9.43 a |
v-2 | v-4 | v-6 | Control | Precision, % | F1-Score, % | |
---|---|---|---|---|---|---|
v-2 | 50 | 4 | 0 | 0 | 92.6 | 96.15 |
v-4 | 0 | 108 | 0 | 0 | 100 | 98.18 |
v-6 | 0 | 0 | 109 | 0 | 100 | 99.09 |
Control | 0 | 0 | 2 | 108 | 98.2 | 99.08 |
Sensitivity, % (Recall) | 100 | 96.43 | 98.20 | 100 |
Parameter | SECV | Rcv | SEC | Rcal | RPD |
---|---|---|---|---|---|
N, % | 0.296 | 0.917 | 0.291 | 0.921 | 3.13 |
P, % | 2.236 | 0.795 | 2.180 | 0.809 | 1.91 |
K, % | 0.256 | 0.957 | 0.254 | 0.958 | 3.31 |
Ca, % | 0.398 | 0.935 | 0.378 | 0.942 | 3.11 |
Mg, % | 0.078 | 0.925 | 0.077 | 0.928 | 2.71 |
Mn, ppm | 38.50 | 0.944 | 37.47 | 0.944 | 2.59 |
B, ppm | 2.269 | 0.921 | 2.260 | 0.922 | 2.57 |
Cu, ppm | 0.383 | 0.911 | 0.375 | 0.916 | 2.89 |
Mo, ppm | 0.611 | 0.914 | 0.601 | 0.918 | 3.50 |
Fe, ppm | 2.671 | 0.920 | 2.660 | 0.922 | 2.65 |
S, % | 0.027 | 0.022 | 0.026 | 0.925 | 3.30 |
Zn, ppm | 4.290 | 0.932 | 4.215 | 0.936 | 2.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirakov, I.; Stoyanova, S.; Velichkova, K.; Slavcheva-Sirakova, D.; Valkova, E.; Yorgov, D.; Veleva, P.; Atanassova, S. Exploring Microelement Fertilization and Visible–Near-Infrared Spectroscopy for Enhanced Productivity in Capsicum annuum and Cyprinus carpio Aquaponic Systems. Plants 2024, 13, 3566. https://doi.org/10.3390/plants13243566
Sirakov I, Stoyanova S, Velichkova K, Slavcheva-Sirakova D, Valkova E, Yorgov D, Veleva P, Atanassova S. Exploring Microelement Fertilization and Visible–Near-Infrared Spectroscopy for Enhanced Productivity in Capsicum annuum and Cyprinus carpio Aquaponic Systems. Plants. 2024; 13(24):3566. https://doi.org/10.3390/plants13243566
Chicago/Turabian StyleSirakov, Ivaylo, Stefka Stoyanova, Katya Velichkova, Desislava Slavcheva-Sirakova, Elitsa Valkova, Dimitar Yorgov, Petya Veleva, and Stefka Atanassova. 2024. "Exploring Microelement Fertilization and Visible–Near-Infrared Spectroscopy for Enhanced Productivity in Capsicum annuum and Cyprinus carpio Aquaponic Systems" Plants 13, no. 24: 3566. https://doi.org/10.3390/plants13243566
APA StyleSirakov, I., Stoyanova, S., Velichkova, K., Slavcheva-Sirakova, D., Valkova, E., Yorgov, D., Veleva, P., & Atanassova, S. (2024). Exploring Microelement Fertilization and Visible–Near-Infrared Spectroscopy for Enhanced Productivity in Capsicum annuum and Cyprinus carpio Aquaponic Systems. Plants, 13(24), 3566. https://doi.org/10.3390/plants13243566