Plant Metabolites as SARS-CoV-2 Inhibitors Candidates: In Silico and In Vitro Studies
<p>Schematic representation of the four plant metabolites that presented the most promising interaction parameters with SARS-CoV-2 drug targets, through molecular docking.</p> "> Figure 2
<p>The surface representation of plant metabolites docking positions on the SARS-CoV-2 Mpro active site is shown, with amentoflavone (green), kaempferitrin (blue), 7-O-galloylquercetin (yellow), and gallagic acid (magenta) (<b>A</b>). Contacts of SARS-CoV-2 Mpro active site residues with amentoflavone (<b>B</b>), 7-O-galloylquercetin (<b>C</b>), kaempferitrin (<b>D</b>), and gallagic acid (<b>E</b>) are depicted in a two-dimensional diagram. Dashed black lines indicate hydrogen bonds; full green lines indicate van der Waals interactions.</p> "> Figure 3
<p>Surface representation of plant metabolites docking positions on the SARS-CoV-2 RdRp active site, with amentoflavone (green), kaempferitrin (blue), 7-O-galloylquercetin (yellow), and gallagic acid (magenta) (<b>A</b>). The two-dimensional diagram from contacts of SARS-CoV-2 RDRP active site residues with amentoflavone (<b>B</b>), 7-O-galloylquercetin (<b>C</b>), kaempferitrin (<b>D</b>) and gallagic acid (<b>E</b>) Dashed black lines indicate hydrogen bonds; full green lines indicate van der Waals interactions.</p> "> Figure 4
<p>Amentoflavone (green), kaempferitrin (blue), and 7-O-galloylquercetin (yellow) docking positions on the SARS-CoV-2 Papain-like protease (PLpro) active site are shown on the surface (<b>A</b>). Contacts of SARS-CoV-2 PLpro active site residues with amentoflavone (<b>B</b>), 7-O-galloylquercetin (<b>C</b>), and kaempferitrin (<b>D</b>) are depicted in a two-dimensional diagram. Dashed black lines represent hydrogen bonds; full green lines represent van der Waals interactions; and dashed green lines represents π-π stacking.</p> "> Figure 5
<p>Surface representation of plant metabolites docking positions on the SARS-CoV-2 NSP15 endoribonuclease active site, with amentoflavone (green), 7-O-galloylquercetin (yellow), and gallagic acid (magenta) (<b>A</b>). Contacts of SARS-CoV-2 NSP15 endoribonuclease active site residues with gallagic acid (<b>B</b>), amentoflavone (<b>C</b>), and 7-O-galloylquercetin (<b>D</b>) are depicted in two dimensions. Dashed black lines represent hydrogen bonds, while full green lines represent van der Waals interactions. dashed green line represent π-π stacking.</p> "> Figure 6
<p>Surface representation of plant metabolites docking positions on the SARS-CoV-2 Spike protein (Spro) receptor-binding domain (RBD) active site, with amentoflavone (green), kaempferitrin (blue), and gallagic acid (magenta) (<b>A</b>). Contacts of SARS-CoV-2 Spike protein active site residues with amentoflavone (<b>B</b>), gallagic acid (<b>C</b>), and kaempferitrin (<b>D</b>) are depicted in a two-dimensional diagram. Dashed black lines represent hydrogen bonds, while full green lines represent van der Waals interactions, dashed green line represent π-π stacking.</p> "> Figure 7
<p>Amentoflavone (green), 7-O-galloylquercetin (yellow), and gallagic acid (magenta) docking positions on human ACE-2 (SARS-CoV-2 RBD spike protein binding site), in surface view (<b>A</b>). Contacts of SARS-CoV-2 Spike protein active site residues with amentoflavone (<b>B</b>), gallagic acid (<b>C</b>), and kaempferitrin (<b>D</b>) are depicted in a two-dimensional diagram. Dashed black lines indicate hydrogen bonds; full green lines indicate van der Waals interactions.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Molecular Docking
2.2. In Vitro SARS-CoV-2 Spike-ACE2 Interaction Inhibitor Screening Assay
3. Discussion
4. Materials and Methods
4.1. Choice and Preparation of the Structures of the Compounds
4.2. Target Structures
4.3. Molecular Docking
4.4. In Vitro SARS-CoV-2 Spike-ACE2 Interaction Inhibitor Screening Assay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, H.S.; Aziz, M.S.; Hussein, R.H.; Othman, H.H.; Salih Omer, S.H.; Khalid, E.S.; Abdulrahman, N.A.; Amin, K.; Abdullah, R. The transmission modes and sources of COVID-19: A systematic review. Int. J. Surg. Open 2020, 26, 125–136. [Google Scholar] [CrossRef]
- Guo, Y.-R.; Cao, Q.-D.; Hong, Z.-S.; Tan, Y.-Y.; Chen, S.-D.; Jin, H.-J.; Tan, K.-S.; Wang, D.-Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—An update on the status. Mil. Med. Res. 2020, 7, 11. [Google Scholar] [CrossRef]
- Deng, S.-Q.; Peng, H.-J. Characteristics of and Public Health Responses to the Coronavirus Disease 2019 Outbreak in China. J. Clin. Med. 2020, 9, 575. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef]
- Asif, M.; Saleem, M.; Saadullah, M.; Yaseen, H.S.; Al Zarzour, R. COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacology 2020, 28, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Balmeh, N.; Mahmoudi, S.; Mohammadi, N.; Karabedianhajiabadi, A. Predicted therapeutic targets for COVID-19 disease by inhibiting SARS-CoV-2 and its related receptors. Inform. Med. Unlocked 2020, 20, 100407. [Google Scholar] [CrossRef] [PubMed]
- Khanal, P.; Patil, B.M.; Chand, J.; Naaz, Y. Anthraquinone Derivatives as an Immune Booster and their Therapeutic Option Against COVID-19. Nat. Prod. Bioprospect. 2020, 10, 325–335. [Google Scholar] [CrossRef]
- Meneguzzo, F.; Ciriminna, R.; Zabini, F.; Pagliaro, M. Review of Evidence Available on Hesperidin-Rich Products as Potential Tools against COVID-19 and Hydrodynamic Cavitation-Based Extraction as a Method of Increasing Their Production. Processes 2020, 8, 549. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef]
- Fuzimoto, A.D. An overview of the anti-SARS-CoV-2 properties of Artemisia annua, its antiviral action, protein-associated mechanisms, and repurposing for COVID-19 treatment. J. Integr. Med. 2021, 19, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Malekmohammad, K.; Rafieian-Kopaei, M. Mechanistic Aspects of Medicinal Plants and Secondary Metabolites against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Curr. Pharm. Des. 2021, 27, 3996–4007. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-H. Anti–SARS-CoV-2 Natural Products as Potentially Therapeutic Agents. Front. Pharmacol. 2021, 12, 1015. [Google Scholar] [CrossRef]
- WERMUTH, C.G. The practice of medicinal chemistry; Academic Press: London, UK, 2003. [Google Scholar]
- Oprea, T.I. Chemoinformatics in Lead Discovery. In Chemoinformatics in Drug Discovery; 2005; pp. 23–41. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/3527603743#page=45 (accessed on 20 August 2022).
- Chen, Y.-C. Beware of docking! Trends Pharmacol. Sci. 2015, 36, 78–95. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Liu, X.; Xu, Y.; Li, H.; Luo, C.; Jiang, H. Computational methods for drug design and discovery: Focus on China. Trends Pharmacol. Sci. 2013, 34, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Kaserer, T.; Temml, V.; Kutil, Z.; Vanek, T.; Landa, P.; Schuster, D. Prospective performance evaluation of selected common virtual screening tools. Case study: Cyclooxygenase (COX) 1 and 2. Eur. J. Med. Chem. 2015, 96, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.J.O.; Vasconcelos, C.C.; Garcia, J.B.S.; Pinheiro, M.S.D.; Pereira, F.A.N.; Camelo, D.d.S.; de Morais, S.V.; Freitas, J.R.B.; da Rocha, C.Q.; Ribeiro, M.N.d.S.; et al. Anti-Inflammatory and Antioxidant Activity of Pollen Extract Collected by Scaptotrigona affinis postica: In silico, in vitro, and in vivo Studies. Antioxidants 2020, 9, 103. [Google Scholar] [CrossRef]
- Lopes, A.J.O.; Vasconcelos, C.C.; Pereira, F.A.N.; Silva, R.H.M.; Queiroz, P.F.d.S.; Fernandes, C.V.; Garcia, J.B.S.; Ramos, R.M.; da Rocha, C.Q.; Lima, S.T.d.J.R.M.; et al. Anti-Inflammatory and Antinociceptive Activity of Pollen Extract Collected by Stingless Bee Melipona fasciculata. Int. J. Mol. Sci. 2019, 20, 4512. [Google Scholar] [CrossRef]
- Muegge, I.; Bergner, A.; Kriegl, J.M. Computer-aided drug design at Boehringer Ingelheim. J. Comput. Aided. Mol. Des. 2017, 31, 275–285. [Google Scholar] [CrossRef]
- Kim, E.E.; Baker, C.T.; Dwyer, M.D.; Murcko, M.A.; Rao, B.G.; Tung, R.D.; Navia, M.A. Crystal structure of HIV-1 protease in complex with VX-478, a potent and orally bioavailable inhibitor of the enzyme. J. Am. Chem. Soc. 1995, 117, 1181–1182. [Google Scholar] [CrossRef]
- Kaldor, S.W.; Kalish, V.J.; Davies, J.F., 2nd; Shetty, B.V.; Fritz, J.E.; Appelt, K.; Burgess, J.A.; Campanale, K.M.; Chirgadze, N.Y.; Clawson, D.K.; et al. Viracept (nelfinavir mesylate, AG1343): A potent, orally bioavailable inhibitor of HIV-1 protease. J. Med. Chem. 1997, 40, 3979–3985. [Google Scholar] [CrossRef]
- Wlodawer, A. Rational approach to AIDS drug design through structural biology. Annu. Rev. Med. 2002, 53, 595–614. [Google Scholar] [CrossRef] [PubMed]
- Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; Miyashiro, J.M.; Penning, T.D.; Seibert, K.; et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 1996, 384, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Flower, R.J. The development of COX2 inhibitors. Nat. Rev. Drug Discov. 2003, 2, 179–191. [Google Scholar] [CrossRef] [PubMed]
- von Itzstein, M.; Wu, W.Y.; Kok, G.B.; Pegg, M.S.; Dyason, J.C.; Jin, B.; Van Phan, T.; Smythe, M.L.; White, H.F.; Oliver, S.W. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 1993, 363, 418–423. [Google Scholar] [CrossRef]
- Schindler, T.; Bornmann, W.; Pellicena, P.; Miller, W.T.; Clarkson, B.; Kuriyan, J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000, 289, 1938–1942. [Google Scholar] [CrossRef]
- Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov. 2002, 1, 493–502. [Google Scholar] [CrossRef]
- Hartman, G.D.; Egbertson, M.S.; Halczenko, W.; Laswell, W.L.; Duggan, M.E.; Smith, R.L.; Naylor, A.M.; Manno, P.D.; Lynch, R.J.; Zhang, G. Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors. J. Med. Chem. 1992, 35, 4640–4642. [Google Scholar] [CrossRef]
- Van Drie, J.H. Computer-aided drug design: The next 20 years. J. Comput. Aided. Mol. Des. 2007, 21, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Vijayakrishnan, R. Structure-based drug design and modern medicine. J. Postgrad. Med. 2009, 55, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Talele, T.T.; Khedkar, S.A.; Rigby, A.C. Successful applications of computer aided drug discovery: Moving drugs from concept to the clinic. Curr. Top. Med. Chem. 2010, 10, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016, 11, 905–919. [Google Scholar] [CrossRef]
- Danser, A.H.J.; Epstein, M.; Batlle, D. Renin-Angiotensin System Blockers and the COVID-19 Pandemic. Hypertension 2020, 75, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Vardeny, O.; Michel, T.; McMurray, J.J.V.; Pfeffer, M.A.; Solomon, S.D. Renin–Angiotensin–Aldosterone System Inhibitors in Patients with Covid-19. N. Engl. J. Med. 2020, 382, 1653–1659. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Li, F.; Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef]
- de Wilde, A.H.; Snijder, E.J.; Kikkert, M.; van Hemert, M.J. Host Factors in Coronavirus Replication. Curr. Top. Microbiol. Immunol. 2017, 419, 1–42. [Google Scholar]
- Sawicki, S.G.; Sawicki, D.L. Coronavirus transcription: A perspective. Curr. Top. Microbiol. Immunol. 2005, 287, 31–55. [Google Scholar] [CrossRef]
- Hussain, S.; Pan, J.; Chen, Y.; Yang, Y.; Xu, J.; Peng, Y.; Wu, Y.; Li, Z.; Zhu, Y.; Tien, P.; et al. Identification of Novel Subgenomic RNAs and Noncanonical Transcription Initiation Signals of Severe Acute Respiratory Syndrome Coronavirus. J. Virol. 2005, 79, 5288–5295. [Google Scholar] [CrossRef]
- Perrier, A.; Bonnin, A.; Desmarets, L.; Danneels, A.; Goffard, A.; Rouillé, Y.; Dubuisson, J.; Belouzard, S. The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. J. Biol. Chem. 2019, 294, 14406–14421. [Google Scholar] [CrossRef]
- Zhang, N.; Jiang, S.; Du, L. Current advancements and potential strategies in the development of MERS-CoV vaccines. Expert Rev. Vaccines 2014, 13, 761–774. [Google Scholar] [CrossRef]
- Vardhan, S.; Sahoo, S.K. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Comput. Biol. Med. 2020, 124, 103936. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Kim, S.; Shin, D.H.; Kim, M.-S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzym. Inhib. Med. Chem. 2020, 35, 145–151. [Google Scholar] [CrossRef]
- Joshi, T.; Joshi, T.; Sharma, P.; Mathpal, S.; Pundir, H.; Bhatt, V.; Chandra, S. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 4529–4536. [Google Scholar] [CrossRef] [PubMed]
- Chakravarti, R.; Singh, R.; Ghosh, A.; Dey, D.; Sharma, P.; Velayutham, R.; Roy, S.; Ghosh, D. A review on potential of natural products in the management of COVID-19. RSC Adv. 2021, 11, 16711–16735. [Google Scholar] [CrossRef] [PubMed]
- Pamuru, R.R.; Ponneri, N.; Damu, A.G.; Vadde, R. Targeting Natural Products for the Treatment of COVID-19—An Updated Review. Curr. Pharm. Des. 2020, 26, 5278–5285. [Google Scholar] [CrossRef] [PubMed]
- Sepay, N.; Sepay, N.; Al Hoque, A.; Mondal, R.; Halder, U.C.; Muddassir, M. In silico fight against novel coronavirus by finding chromone derivatives as inhibitor of coronavirus main proteases enzyme. Struct. Chem. 2020, 31, 1831–1840. [Google Scholar] [CrossRef]
- MA, S.-C.; BUT, P.P.-H.; OOI, V.E.-C.; HE, Y.-H.; LEE, S.H.-S.; LEE, S.-F.; LIN, R.-C. Antiviral Amentoflavone from Selaginella sinensis. Biol. Pharm. Bull. 2001, 24, 311–312. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Flavin, M.T.; Schure, R.; Chen, F.-C.; Sidwell, R.; Barnard, D.I.; Huffmann, J.H.; Kern, E.R. Antiviral Activities of Biflavonoids. Planta Med. 1999, 65, 120–125. [Google Scholar] [CrossRef]
- Li, F.; Song, X.; Su, G.; Wang, Y.; Wang, Z.; Jia, J.; Qing, S.; Huang, L.; Wang, Y.; Zheng, K.; et al. Amentoflavone Inhibits HSV-1 and ACV-Resistant Strain Infection by Suppressing Viral Early Infection. Viruses 2019, 11, 466. [Google Scholar] [CrossRef]
- Wilsky, S.; Sobotta, K.; Wiesener, N.; Pilas, J.; Althof, N.; Munder, T.; Wutzler, P.; Henke, A. Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication. Arch. Virol. 2012, 157, 259–269. [Google Scholar] [CrossRef]
- Lee, W.-P.; Lan, K.-L.; Liao, S.-X.; Huang, Y.-H.; Hou, M.-C.; Lan, K.-H. Inhibitory Effects of Amentoflavone and Orobol on Daclatasvir-Induced Resistance-Associated Variants of Hepatitis C Virus. Am. J. Chin. Med. 2018, 46, 835–852. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Anderson, H.; Flavin, M.T.; Pai, Y.-H.S.; Mata-Greenwood, E.; Pengsuparp, T.; Pezzuto, J.M.; Schinazi, R.F.; Hughes, S.H.; Chen, F.-C. In Vitro Anti-HIV Activity of Biflavonoids Isolated from Rhus succedanea and Garcinia multiflora. J. Nat. Prod. 1997, 60, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.-Y.; Kim, D.; Naguyen, T.T.H.; Park, S.-J.; Chang, J.S.; Park, K.H. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg. Med. Chem. 2010, 18, 7940–7947. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020, 368, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Li, J.; Lei, X.; Liu, Y.; Yang, Z.; Chen, K. Antiviral Activity of Total Flavonoid Extracts from Selaginella moellendorffii Hieron against Coxsackie Virus B3 In Vitro and In Vivo. Evid. -Based Complement. Altern. Med. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Yang, M.; Lin, L.; Scartelli, C.; Chen, D.-Y.; Patel, A.; Bekendam, R.; Sun, L.; Saeed, M.; Flaumenhaft, R. Inhibition of Sars-Cov-2 Viral Replication and In Vivo Thrombus Formation By a Novel Plant Flavonoid. Blood 2021, 138, 3144. [Google Scholar] [CrossRef]
- Vasconcelos, C.C.; Lopes, A.J.O.; Sousa, E.L.F.; Camelo, D.S.; Lima, F.C.V.M.; da Rocha, C.Q.; Silva, G.E.B.; Garcia, J.B.S.; Cartágenes, M.d.S.d.S. Effects of Extract of Arrabidaea chica Verlot on an Experimental Model of Osteoarthritis. Int. J. Mol. Sci. 2019, 20, 4717. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Amentoflavone, a plant biflavone: A new potential anti-inflammatory agent. Arch. Pharm. Res. 1998, 21, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Katavic, P.L.; Lamb, K.; Navarro, H.; Prisinzano, T.E. Flavonoids as Opioid Receptor Ligands: Identification and Preliminary Structure−Activity Relationships. J. Nat. Prod. 2007, 70, 1278–1282. [Google Scholar] [CrossRef]
- Amellal, M.; Bronner, C.; Briancon, F.; Haag, M.; Anton, R.; Landry, Y. Inhibition of Mast Cell Histamine Release by Flavonoids and Biflavonoids. Planta Med. 1985, 51, 16–20. [Google Scholar] [CrossRef]
- Su, C.; Yang, C.; Gong, M.; Ke, Y.; Yuan, P.; Wang, X.; Li, M.; Zheng, X.; Feng, W. Antidiabetic Activity and Potential Mechanism of Amentoflavone in Diabetic Mice. Molecules 2019, 24, 2184. [Google Scholar] [CrossRef]
- Qin, L.; Zhao, Y.; Zhang, B.; Li, Y. Amentoflavone improves cardiovascular dysfunction and metabolic abnormalities in high fructose and fat diet-fed rats. Food Funct. 2018, 9, 243–252. [Google Scholar] [CrossRef]
- De Melo, G.O.; do C. Malvar, D.; Vanderlinde, F.A.; Rocha, F.F.; Pires, P.A.; Costa, E.A.; de Matos, L.G.; Kaiser, C.R.; Costa, S.S. Antinociceptive and anti-inflammatory kaempferol glycosides from Sedum dendroideum. J. Ethnopharmacol. 2009, 124, 228–232. [Google Scholar] [CrossRef]
- Toker, G.; Küpeli, E.; Memisoğlu, M.; Yesilada, E. Flavonoids with antinociceptive and anti-inflammatory activities from the leaves of Tilia argentea (silver linden). J. Ethnopharmacol. 2004, 95, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.-H.; Rao, Y.K.; Tzeng, Y.-M. Inhibitory effects of flavonol glycosides from Cinnamomum osmophloeum on inflammatory mediators in LPS/IFN-γ-activated murine macrophages. Bioorg. Med. Chem. 2005, 13, 2381–2388. [Google Scholar] [CrossRef] [PubMed]
- Cassani, J.; Dorantes-Barrón, A.; Novales, L.; Real, G.; Estrada-Reyes, R. Anti-Depressant-Like Effect of Kaempferitrin Isolated from Justicia spicigera Schltdl (Acanthaceae) in Two Behavior Models in Mice: Evidence for the Involvement of the Serotonergic System. Molecules 2014, 19, 21442–21461. [Google Scholar] [CrossRef] [PubMed]
- Dalmarco, E.; Koelzer, J.; Pizzolatti, M.; Frode, T.; Dalmarco, J. Isolation and identification of bioactive compounds responsible for the anti-bacterial efficacy of Lotus corniculatus var. Sao Gabriel. Int. J. Green Pharm. 2010, 4, 108. [Google Scholar] [CrossRef]
- Hamzah, A.; Lajis, N.; Sargent, M. Kaempferitrin from the Leaves of Hedyotis verticillata and its Biological Activity. Planta Med. 1994, 60, 388–389. [Google Scholar] [CrossRef]
- Choi, J.-G.; Kim, Y.S.; Kim, J.H.; Chung, H.-S. Antiviral activity of ethanol extract of Geranii Herba and its components against influenza viruses via neuraminidase inhibition. Sci. Rep. 2019, 9, 12132. [Google Scholar] [CrossRef]
- Vatulina, G.G.; Bol’shakova, S.A.; Tuzhilkova, T.I.; Bokova, A.I.; Makhsudova, B.; Khaitbaeva, A.G.; Mukhamedzhanov, S.Z. The search for radioprotectors among ketocompounds. Pharm. Chem. J. 1985, 19, 326–330. [Google Scholar] [CrossRef]
- Jorge, A.P.; Horst, H.; de Sousa, E.; Pizzolatti, M.G.; Silva, F.R.M.B. Insulinomimetic effects of kaempferitrin on glycaemia and on 14C-glucose uptake in rat soleus muscle. Chem. Biol. Interact. 2004, 149, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, Y.-M.; Chen, K.; Rao, Y.K.; Lee, M.-J. Kaempferitrin activates the insulin signaling pathway and stimulates secretion of adiponectin in 3T3-L1 adipocytes. Eur. J. Pharmacol. 2009, 607, 27–34. [Google Scholar] [CrossRef] [PubMed]
- de Souza, P.; da Silva, L.M.; Boeing, T.; Somensi, L.B.; Cechinel-Zanchett, C.C.; Campos, A.; Krueger, C.d.M.A.; Bastos, J.K.; Cechinel-Filho, V.; de Andrade, S.F. Influence of Prostanoids in the Diuretic and Natriuretic Effects of Extracts and Kaempferitrin from Bauhinia forficata Link Leaves in Rats. Phyther. Res. 2017, 31, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.; Gupta, S.; Jacob, M.; Khan, S.; Ferreira, D. Antioxidant, Antimalarial and Antimicrobial Activities of Tannin-Rich Fractions, Ellagitannins and Phenolic Acids from Punica granatum L. Planta Med. 2007, 73, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Roubalová, L.; Biedermann, D.; Papoušková, B.; Vacek, J.; Kuzma, M.; Křen, V.; Ulrichová, J.; Dinkova-Kostova, A.T.; Vrba, J. Semisynthetic flavonoid 7-O-galloylquercetin activates Nrf2 and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells. Chem. Biol. Interact. 2016, 260, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Shu, Z.; Chang, K.; Zhou, Y.; Peng, C.; Li, X.; Cai, W.; Wei, L.; Zheng, Q.; Tian, H.; Xia, J.; et al. Add-On Chinese Medicine for Coronavirus Disease 2019 (ACCORD): A Retrospective Cohort Study of Hospital Registries. Am. J. Chin. Med. 2021, 49, 543–575. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Guo, L.; Liu, B.; Bian, Y.; Chen, R.; Chen, S.; Chen, Y.; Chen, Y.; Cong, X.; Dong, G.; et al. Efficacy and safety of Chinese herbal medicine versus Lopinavir-Ritonavir in adult patients with coronavirus disease 2019: A non-randomized controlled trial. Phytomedicine 2021, 81, 153367. [Google Scholar] [CrossRef] [PubMed]
- DAI, Y.-J.; WAN, S.-Y.; GONG, S.-S.; LIU, J.-C.; LI, F.; KOU, J.-P. Recent advances of traditional Chinese medicine on the prevention and treatment of COVID-19. Chin. J. Nat. Med. 2020, 18, 881–889. [Google Scholar] [CrossRef]
- Runfeng, L.; Yunlong, H.; Jicheng, H.; Weiqi, P.; Qinhai, M.; Yongxia, S.; Chufang, L.; Jin, Z.; Zhenhua, J.; Haiming, J.; et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol. Res. 2020, 156, 104761. [Google Scholar] [CrossRef]
- Luo, H.; Yang, M.; Tang, Q.-L.; Hu, X.-Y.; Willcox, M.L.; Liu, J.-P. Characteristics of registered clinical trials on traditional Chinese medicine for coronavirus disease 2019 (COVID-19): A scoping review. Eur. J. Integr. Med. 2021, 41, 101251. [Google Scholar] [CrossRef]
- Barboza, J.R.; Pereira, F.A.N.; Fernandes, R.A.; Vasconcelos, C.C.; Cartágenes, M.d.S.d.S.; Oliveira Lopes, A.J.; de Melo, A.C.; Guimarães, I.d.S.; da Rocha, C.Q.; Ribeiro, M.N.d.S. Cytotoxicity and Pro-Apoptotic, Antioxidant and Anti-Inflammatory Activities of Geopropolis Produced by the Stingless Bee Melipona fasciculata Smith. Biol. (Basel). 2020, 9, 292. [Google Scholar] [CrossRef]
- Lima, M.V.V.; Freire, A.d.O.; Sousa, E.L.F.; Vale, A.A.M.; Lopes, A.J.O.; Vasconcelos, C.C.; Lima-Aragão, M.V.V.; Serra, H.O.; Liberio, R.N.M.G.; dos Santos, A.P.S.d.A.; et al. Therapeutic Use of Scoparia dulcis Reduces the Progression of Experimental Osteoarthritis. Molecules 2019, 24, 3474. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, C.C.; Lopes, A.J.O.; de Jesus Garcia Ataide, E.; Carvalho, K.W.P.; de Brito, M.F.F.; Rodrigues, M.S.; de Morais, S.V.; Silva, G.E.B.; da Rocha, C.Q.; Garcia, J.B.S.; et al. Arrabidaea chica Verlot fractions reduce MIA-induced osteoarthritis progression in rat knees. Inflammopharmacology 2021, 29, 735–752. [Google Scholar] [CrossRef] [PubMed]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView5. 2016. Available online: https://gaussian.com/ (accessed on 20 August 2022).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09 2016. Available online: https://gaussian.com/glossary/g09/ (accessed on 20 August 2022).
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Calado, G.P.; Lopes, A.J.O.; Costa Junior, L.M.; Lima, F.d.C.A.; Silva, L.A.; Pereira, W.S.; do Amaral, F.M.M.; Garcia, J.B.S.; Cartagenes, M.d.S.d.S.; Nascimento, F.R.F. Chenopodium ambrosioides L. Reduces Synovial Inflammation and Pain in Experimental Osteoarthritis. PLoS ONE 2015, 10, e0141886. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Stierand, K.; Maass, P.C.; Rarey, M. Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics 2006, 22, 1710–1716. [Google Scholar] [CrossRef] [Green Version]
MainPro | RdRp | Papain-like Protease | NSP15 Endoribonuclease | Spike Protein | ACE-2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ligand | ΔGbind * | Ligand | ΔGbind * | Ligand | ΔGbind * | Ligand | ΔGbind * | Ligand | ΔGbind * | Ligand | ΔGbind * |
Amentoflavone | −8.7 | Amentoflavone | −9.4 | Amentoflavone | −7.7 | Gallagic acid | −9.3 | Amentoflavone | −8.7 | Amentoflavone | −9.1 |
7-O-Galloylquercetin | −8.6 | Kaempferitrin | −9.3 | Kaempferitrin | −7.5 | Amentoflavone | −9.1 | Gallagic acid | −8.6 | Gallagic acid | −8.9 |
Kaempferitrin | −8.6 | Gallagic acid | −9.0 | 7-O-Galloylquercetin | −7.4 | 7-O-Galloylquercetin | −8.3 | Kaempferitrin | −8.0 | Nicotinflorin | −8.5 |
Digalloylshikimic acid | −8.4 | 7-O-Galloylquercetin | −8.8 | Myricitrin | −7.3 | Alpha-amyrin | −8.1 | Isoschaftoside | −7.7 | Digalloylshikimic acid | −8.5 |
Gallagic acid | −8.2 | Typhaneoside | −8.6 | Suspensaside | −7.3 | Rhamnosylisoorientin | −8.1 | Vitexin | −7.6 | 7-O-Galloylquercetin | −8.4 |
Quercetin 7-O-glucoside | −8.1 | Verbascoside/Acteoside | −8.5 | Isoquercetrin | −7.1 | Beta-amyrin | −8.0 | Orientin | −7.5 | Rutin | −8.2 |
Luteolin 7-galactoside | −8.0 | Beta-amyrin | −8.3 | Afzelin | −7.1 | Ursolic acid | −8.0 | Quercetrin | −7.4 | Ursolic acid | −8.2 |
Quercetrin | −7.9 | Rutin | −8.3 | Beta-amyrin | −7.0 | Isoorientin | −7.8 | Myricetin | −7.4 | Myricetin | −8.1 |
Rutin | −7.9 | Myricetin | −8.3 | Luteolin 7-galactoside | −7.0 | Rutin | −7.8 | 7-O-Galloylquercetin | −7.3 | Isoorientin | −8.1 |
Myricitrin | −7.8 | Nicotinflorin | −8.2 | Gallagic acid | −7.0 | Digalloylshikimic acid | −7.7 | Rutin | −7.3 | Alpha-amyrin | −7.9 |
Nicotinflorin | −7.8 | Alpha-amyrin | −8.1 | Alpha-amyrin | −6.9 | Ellagic acid | −7.7 | Verbascoside/Acteoside | −7.3 | Anthraquinone | −7.9 |
Rhamnosylisoorientin | −7.7 | Rhamnosylisoorientin | −8.0 | Digalloylshikimic acid | −6.9 | Myricetin | −7.7 | Isoorientin | −7.1 | Myricitrin | −7.9 |
Luteolin | −7.7 | Isoschaftoside | −8.0 | Quercetin 7-O-glucoside | −6.8 | Nicotinflorin | −7.6 | Isovitexin | −7.1 | Azadiradione | −7.8 |
Quercetin | −7.6 | Digalloylshikimic acid | −7.9 | Verbascoside/Acteoside | −6.8 | Verbascoside/Acteoside | −7.6 | Luteolin 7-galactoside | −7.1 | Ellagic acid | −7.8 |
Isoquercetrin | −7.5 | Isovitexin | −7.9 | Orientin | −6.7 | Anthraquinone | −7.5 | Beta-amyrin | −6.9 | Vismione D | −7.8 |
Myricetin | −7.5 | Azadiradione | −7.8 | Rutin | −6.7 | Azadiradione | −7.5 | Rhamnosylisoorientin | −6.9 | Quercetrin | −7.7 |
Orientin | −7.4 | Isoorientin | −7.8 | Rhamnosylisoorientin | −6.6 | Isovitexin | −7.5 | Ononin | −6.9 | Quercetin | −7.7 |
Ellagic acid | −7.3 | Luteolin 7-galactoside | −7.8 | Ononin | −6.6 | Luteolin 7-galactoside | −7.5 | Protocathecuic acid | −6.9 | Luteolin 7-galactoside | −7.6 |
Anthraquinone | −7.2 | Orientin | −7.8 | Ursolic acid | −6.6 | Quercetrin | −7.5 | Typhaneoside | −6.9 | Chrysoeriol | −7.6 |
Afzelin | −7.2 | Isoquercetrin | −7.7 | Vitexin | −6.6 | Afzelin | −7.4 | Ellagic acid | −6.8 | Afzelin | −7.5 |
Vitexin | −7.2 | Vitexin | −7.7 | Isoorientin 7,3′-dimethyl ether | −6.5 | Luteolin | −7.4 | Quercetin 7-O-glucoside | −6.8 | Kaempferitrin | −7.5 |
Diosmetin | −7.1 | Quercetin 7-O-glucoside | −7.6 | Isovitexin | −6.5 | Orientin | −7.4 | Alpha-amyrin | −6.7 | Ononin | −7.5 |
Isoorientin 7,3′-dimethyl ether | −7.1 | Quercetrin | −7.6 | Nicotinflorin | −6.5 | Diosmetin | −7.3 | Afzelin | −6.7 | Isovitexin | −7.5 |
Azadiradione | −7.0 | Isoorientin 7,3′-dimethyl ether | −7.5 | Quercetrin | −6.5 | Ononin | −7.3 | Vismione D | −6.7 | Quercetin 7-O-glucoside | −7.4 |
Beta-amyrin | −7.0 | Myricitrin | −7.5 | Typhaneoside | −6.5 | Vitexin | −7.3 | Digalloylshikimic acid | −6.6 | Rhamnosylisoorientin | −7.4 |
Isoorientin | −7.0 | Ononin | −7.5 | Quercetin | −6.4 | Isoorientin 7,3′-dimethyl ether | −7.2 | Isoorientin 7,3′-dimethyl ether | −6.5 | Orientin | −7.4 |
Isovitexin | −7.0 | Afzelin | −7.4 | Azadiradione | −6.3 | Carajurin | −7.1 | Ursolic acid | −6.5 | Kaempferol | −7.4 |
Ononin | −7.0 | Ursolic acid | −7.3 | Chrysoeriol | −6.2 | Chrysoeriol | −7.1 | Azadiradione | −6.4 | Rhamnocitrin | −7.4 |
Ursolic acid | −7.0 | β-sitosterol | −7.2 | Ellagic acid | −6.2 | Isoquercetrin | −7.1 | Chrysoeriol | −6.4 | Protocathecuic acid | −7.4 |
β-sitosterol | −6.9 | Diosmetin | −7.0 | Isoorientin | −6.2 | Isoschaftoside | −7.1 | Glucogallin | −6.4 | Beta-amyrin | −7.3 |
Alpha-amyrin | −6.9 | Ellagic acid | −7.0 | Isoschaftoside | −6.2 | Myricitrin | −7.1 | Nicotinflorin | −6.4 | Naringenin | −7.3 |
Kaempferol | −6.9 | Glucogallin | −6.9 | Luteolin | −6.2 | Naringenin | −7.1 | Myricitrin | −6.3 | Luteolin | 7.3 |
Rhamnocitrin | −6.9 | Quercetin | −6.8 | β-sitosterol | −6.1 | Typhaneoside | −7.1 | β-sitosterol | −6.2 | Vitexin | −7.2 |
Chrysoeriol | −6.8 | Chrysoeriol | −6.7 | Anthraquinone | −6.1 | Kaempferitrin | −7.0 | Luteolin | −6.2 | Diosmetin | −7.2 |
Glucogallin | −6.8 | Kaempferol | −6.7 | Diosmetin | −6.1 | Quercetin | −7.0 | Diosmetin | −6.1 | Verbascoside/Acteoside | −7.1 |
Naringenin | −6.8 | Protocathecuic acid | −6.7 | Naringenin | −6.0 | Kaempferol | −6.9 | Isoquercetrin | −6.1 | Isoorientin 7,3′-dimethyl ether | −7,0 |
5,7-Dimethoxyluteolin | −6.7 | Anthraquinone | −6.6 | Glucogallin | −5.9 | Quercetin 7-O-glucoside | −6.9 | Naringenin | −6.1 | Isoquercetrin | −6.9 |
Verbascoside/Acteoside | −6.7 | Luteolin | −6.6 | Kaempferol | −5.9 | Rhamnocitrin | −6.9 | Quercetin | −6.1 | β-sitosterol | −6.9 |
Vismione D | −6.6 | Rhamnocitrin | −6.6 | Protocathecuic acid | −5.9 | Protocathecuic acid | −6.8 | Rhamnocitrin | −6.1 | Glucogallin | −6.9 |
Protocathecuic acid | −6.5 | Naringenin | −6.5 | Rhamnocitrin | −5.8 | Vismione D | −6.7 | Anthraquinone | −6.0 | Isoschaftoside | −6.6 |
Isoschaftoside | −6.2 | Carajurin | −6.3 | 5,7-Dimethoxyluteolin | −5.7 | 5,7-Dimethoxyluteolin | −6.6 | Kaempferol | −6.0 | 5,7-Dimethoxyluteolin | −6.6 |
Carajurin | −6.0 | 5,7-Dimethoxyluteolin | −6.2 | Carajurin | −5.6 | Glucogallin | −6.5 | 5,7-Dimethoxyluteolin | −5.9 | Carajurin | −6.5 |
Typhaneoside | −6.0 | Vismione D | −6.0 | Vismione D | −5.6 | Caffeic acid | −6.2 | Carajurin | −5.9 | Beta-caryophyllene | −6.5 |
Caffeic acid | −5.5 | Gallic acid | −5.9 | Beta-caryophyllene | −5.5 | β-sitosterol | −6.1 | Gallic acid | −5.7 | Elemol | −6.5 |
Gallic acid | −5.3 | Caffeic acid | −5.4 | Elemol | −5.3 | Elemol | −5.8 | Beta-caryophyllene | −5.5 | Caffeic acid | −6.5 |
Beta-caryophyllene | −5.2 | Elemol | −5.4 | Thymol acetate | −5.3 | Beta-caryophyllene | −5.7 | Caffeic acid | −5.4 | Cumaric acid | −6.2 |
Thymoquinone | −5.1 | Beta-caryophyllene | −5.3 | Beta-elemene | −5.2 | Cumaric acid | −5.7 | Elemol | −5.3 | Typhaneoside | −6.1 |
Cumaric acid | −4.9 | Thymol acetate | −5.2 | Caffeic acid | −5.1 | Carvacrol | −5.4 | Beta-elemene | −5.1 | Linoleic acid | −5.9 |
Elemol | −4.9 | Thymoquinone | −5.2 | Carvacrol | −4.9 | Alpha terpineol | −5.3 | Thymol acetate | −5.1 | Carvacrol | −5.9 |
Beta-elemene | −4.8 | Beta-elemene | −5.1 | Cumaric acid | −4.9 | Linolenic acid | −5.3 | Thymoquinone | −5.1 | Beta-elemene | −5.7 |
Carvacrol | −4.8 | Alpha terpineol | −4.9 | Gallic acid | −4.8 | Thymol acetate | −5.3 | Alpha terpineol | −5.0 | Thymol acetate | −5.6 |
Linolenic acid | −4.8 | Cumaric acid | −4.9 | Alpha terpineol | −4.7 | Beta-elemene | −5.2 | Cumaric acid | −5.0 | Linolenic acid | −5.6 |
Thymol acetate | −4.8 | Carvacrol | −4.8 | Thymoquinone | −4.6 | Thymoquinone | −5.2 | Carvacrol | −4.9 | Alpha terpineol | −5.5 |
Linoleic acid | −4.7 | Linoleic acid | −4.2 | Linoleic acid | −4.4 | Gallic acid | −5.1 | Linoleic acid | −4.2 | Gallic acid | −5.4 |
Alpha terpineol | −4.3 | Linolenic acid | −4.2 | Linolenic acid | −4.4 | Linoleic acid | −4.7 | Linolenic acid | −4.2 | Thymoquinone | −5.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, A.J.O.; Calado, G.P.; Fróes, Y.N.; Araújo, S.A.d.; França, L.M.; Paes, A.M.d.A.; Morais, S.V.d.; Rocha, C.Q.d.; Vasconcelos, C.C. Plant Metabolites as SARS-CoV-2 Inhibitors Candidates: In Silico and In Vitro Studies. Pharmaceuticals 2022, 15, 1045. https://doi.org/10.3390/ph15091045
Lopes AJO, Calado GP, Fróes YN, Araújo SAd, França LM, Paes AMdA, Morais SVd, Rocha CQd, Vasconcelos CC. Plant Metabolites as SARS-CoV-2 Inhibitors Candidates: In Silico and In Vitro Studies. Pharmaceuticals. 2022; 15(9):1045. https://doi.org/10.3390/ph15091045
Chicago/Turabian StyleLopes, Alberto Jorge Oliveira, Gustavo Pereira Calado, Yuri Nascimento Fróes, Sandra Alves de Araújo, Lucas Martins França, Antonio Marcus de Andrade Paes, Sebastião Vieira de Morais, Cláudia Quintino da Rocha, and Cleydlenne Costa Vasconcelos. 2022. "Plant Metabolites as SARS-CoV-2 Inhibitors Candidates: In Silico and In Vitro Studies" Pharmaceuticals 15, no. 9: 1045. https://doi.org/10.3390/ph15091045
APA StyleLopes, A. J. O., Calado, G. P., Fróes, Y. N., Araújo, S. A. d., França, L. M., Paes, A. M. d. A., Morais, S. V. d., Rocha, C. Q. d., & Vasconcelos, C. C. (2022). Plant Metabolites as SARS-CoV-2 Inhibitors Candidates: In Silico and In Vitro Studies. Pharmaceuticals, 15(9), 1045. https://doi.org/10.3390/ph15091045