Synthesis, Characterisation and Mechanism of Action of Anticancer 3-Fluoroazetidin-2-ones
"> Figure 1
<p>Colchicine (<b>1</b>), combretastatins CA-1 (<b>2a</b>), CA-1P (<b>2b</b>), CA-2 (<b>2c</b>), CA-3 (<b>2d</b>), CA-4 (<b>2e</b>), CA-4P (fosbretabulin) (<b>2f</b>), ombrabulin (<b>2g</b>), CB-1 (<b>3a</b>) and CB-2 (<b>3b</b>).</p> "> Figure 2
<p>Microtubule-targeting agents <b>4</b>–<b>15</b> and target structures.</p> "> Figure 3
<p>Preliminary cell viability data for 3-fluoro and 3,3-difluoro β-lactam compounds. (<b>A</b>) 3-Fluoro β-lactam compounds containing different <span class="html-italic">para</span>-substituent ring B <b>26</b>–<b>29</b>; 3-fluoro β-lactam compounds containing different <span class="html-italic">meta</span>-substituent ring B <b>30</b>, <b>32</b>–<b>35</b>; (<b>B</b>) 3-difluoro β-lactam compounds containing different <span class="html-italic">para</span>-substituent ring B <b>36</b>–<b>39</b>; 3-difluoro β-lactam compounds containing different <span class="html-italic">meta</span>-substituent ring B <b>40</b>, <b>42</b>–<b>45</b> in MCF-7 breast cancer cells. Cell proliferation of MCF-7 cells was determined with an AlamarBlue assay (seeding density 2.5 × 10<sup>5</sup> cells/mL per well for 96-well plates). Compound concentrations of either 10 μM or 1 μM for 72 h were used to treat the cells with control wells containing vehicle ethanol (1% <span class="html-italic">v</span>/<span class="html-italic">v</span>) and CA-4 (10 μM and 1 μM). The mean value for three experiments is shown with the ± S.E.M. for three independent experiments.</p> "> Figure 4
<p>Antiproliferative activity of 3-fluoro β-lactams on MCF-7, MDA-MB-231, Hs578T and Hs578T isogenic subclone Hs578T(i)8 breast cancer cells and non-tumourigenic HEK-293T cells. (<b>A</b>) Antiproliferative activity for 3-fluoro β-lactams <b>26</b>, <b>32</b>, <b>33</b>, <b>42</b> and <b>CA-4</b> in MCF-7 cells. Cells were grown in 96-well plates and treated with indicated β-lactam compounds at 0.01–50 μM for 72 h. Cell viability was expressed as a percentage of vehicle control (ethanol 1% (<span class="html-italic">v</span>/<span class="html-italic">v</span>))-treated cells. The values represent the mean ± S.E.M. for three independent experiments performed in triplicate. (<b>B</b>) Antiproliferative activity of 3-fluoro β-lactam <b>33</b> in MCF-7 and MDA-MB-231 cells. (<b>C</b>) Antiproliferative activity of 3-fluoro β-lactam <b>33</b> in triple-negative breast cancer cell line Hs578T and its isogenic subclone Hs578T(i)8. (<b>D</b>) Effect of compound <b>33</b> on viability of MCF-7 and non-tumourigenic HEK-293T cells. Cells were grown in 96-well plates and treated with compound <b>33</b> at 1, 10 and 50 μM for 72 h. Cell viability was expressed as a percentage of vehicle control (ethanol 1% (<span class="html-italic">v</span>/<span class="html-italic">v</span>))-treated cells and was measured by AlamarBlue assay (average of three independent experiments). Two-way ANOVA (Bonferroni post-test) was used to test for statistical significance (***, <span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>Compound <b>33</b> induces apoptosis in MCF-7 breast cancer cells. MCF-7 breast cancer cells were treated with <b>33</b> (0.1 and 0.5 µM), CA-4 (50 nM) or vehicle control (0.1% ethanol (<span class="html-italic">v</span>/<span class="html-italic">v</span>)) for 48 h. The percentage of apoptotic cells was determined by staining with Annexin V–FITC and PI. In each panel, the <b>lower left</b> quadrant shows cells that are negative for both PI and Annexin V–FITC, and the <b>upper left</b> shows cells that are only negative PI, which are necrotic. The <b>lower right</b> quadrant shows Annexin-positive cells which are in the early apoptotic stage, and the <b>upper right</b> shows both Annexin- and PI-positive cells, which are in late apoptosis.</p> "> Figure 6
<p>β-Lactam <b>33</b> decreases the expression of anti-apoptotic proteins Bcl-2 and survivin and increases the expression of pro-apoptotic protein Bax in MCF-7 cells. MCF-7 cells were treated with vehicle control (ethanol 0.1% <span class="html-italic">v</span>/<span class="html-italic">v</span>) or <b>21</b> at the indicated concentrations (0.05, 0.1 or 0.5 μM) for 48 h (<b>left</b>) or 72 h (<b>right</b>). Then, the cells were harvested for Western blot analysis to detect the level of the apoptosis-related proteins. Results are indicative of three separate experiments, performed independently. To confirm equal protein loading, each membrane was stripped and re-probed with GAPDH antibody.</p> "> Figure 7
<p>Effect of β-lactam compound <b>33</b> (10 and 30 µM) and paclitaxel (10 µM) on in vitro tubulin polymerisation. Purified bovine tubulin and GTP were mixed in a 96-well plate. Compounds were added and the reaction was started by warming the solution from 4 to 37 °C. Ethanol (1% <span class="html-italic">v</span>/<span class="html-italic">v</span>) was used as a vehicle control. The effect on tubulin assembly was monitored in a Spectramax 340PC spectrophotometer at 340 nm at 30 s intervals for 30 min at 37 °C. The graph shows one representative experiment. Each experiment was performed in duplicate.</p> "> Figure 8
<p>Compound <b>33</b> acts as depolymeriser of the microtubule network of MCF-7 breast cancer cells. Cells were treated with vehicle control (0.1% ethanol (<span class="html-italic">v</span>/<span class="html-italic">v</span>)), CA-4 (0.01 μM), paclitaxel (1 μM) or compound <b>33</b> (0.1, 0.5 and 1 μM) for 16 h. Cells were fixed in ice-cold methanol and stained with mouse monoclonal anti-α-tubulin–FITC antibody (clone DM1A) (green) and Alexa Fluor 488 dye and counterstained with DAPI (blue). Images were obtained with Leica SP8 confocal microscopy with Leica Application Suite X software, (LAS V 4.13), Wetzlar, Germany. Representative confocal micrographs of three separate experiments are shown. White scale bar indicates 50 μM.</p> "> Figure 9
<p>Overlay of the X-ray structure of tubulin co-crystallised with DAMA-colchicine (PDB entry 1SA0) on the best ranked docked poses of the <span class="html-italic">S</span> enantiomers of β-lactams: (<b>A</b>) <b>32</b> (3<span class="html-italic">S</span>,4<span class="html-italic">S</span>), (<b>B</b>) <b>33</b> (3<span class="html-italic">S</span>,4<span class="html-italic">S</span>), (<b>C</b>) <b>42</b> (4<span class="html-italic">S</span>) and (<b>D</b>) <b>43</b> (4<span class="html-italic">S</span>). Ligands are rendered as tubes and amino acids as lines. Tubulin amino acids and DAMA-colchicine are coloured by atom type, the novel β-lactam compounds are coloured with a green backbone. The atoms are coloured by element type; carbon = grey, hydrogen = white, oxygen = red, nitrogen = blue, sulphur = yellow, fluorine = green. Key amino acid residues are labelled and multiple residues are hidden to enable a clearer view.</p> "> Scheme 1
<p>Synthesis of 2-azetidinones <b>26</b>–<b>45</b>. Reagents and conditions: (<b>a</b>) EtOH, reflux, 4 h, 75–91%; (<b>b</b>) TBDMSCl, DBU, CH<sub>2</sub>Cl<sub>2</sub>, 20 °C, until reaction complete as indicated by TLC, 52%; (<b>c</b>) Zn dust, TMSCl, 40 °C, 15 min, then 100 °C, 2 min, microwave, C<sub>6</sub>H<sub>6</sub>, 100 °C, 30 min, microwave (<b>26</b>–<b>31</b>, <b>33</b>–<b>35</b>, 6–58%; <b>36</b>–<b>41</b>, <b>43</b>–<b>45</b>, 13–65%); (<b>d</b>) TBAF, THF, 0 °C, 15 min (<b>32</b>, 18%; <b>42</b>, 21%). Products obtained as racemic mixtures, one enantiomer illustrated.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. X-ray Structural Study for 3-Fluoro and 3,3-Difluoro-β-lactams 33 and 43
2.3. Stability Study for β-Lactams 33 and 39
2.4. Predicted Physicochemical and ADME Properties
2.5. Biochemical Results
2.5.1. In Vitro Antiproliferative Activity of 3-Fluoro β-Lactams and 3,3-Difluoro β-Lactams in MCF-7 Breast Cancer Cells
2.5.2. NCI 60 Cell Line Screening for β-Lactam Compounds 33, 37 and 43
Panel | Cell Line | GI50 (μM) b | TGI (μM) c | Panel | Cell Line | GI50 (μM) b | TGI (μM) c |
---|---|---|---|---|---|---|---|
Leukaemia | CCRF-CEM | 0.0471 | >100 | Melanoma | LOX IMVI | 0.0904 | >100 |
HL-60(TB) | 0.0805 | 0.399 | MALME-3M | Nd d | >100 | ||
K-562 | 0.0383 | >100 | M14 | 0.0254 | Nd d | ||
MOLT-4 | 0.146 | 93.4 | MDA-MB-435 | 0.0291 | Nd d | ||
RPMI-8226 | 0.055 | 37.3 | SK-MEL-2 | 0.303 | >100 | ||
SR | 0.0408 | >100 | SK-MEL-28 | 15.8 | >100 | ||
NSCLung | A549/A TCC | 0.394 | >100 | SK-MEL-5 | 0.0456 | 0.35 | |
EKVX | 0.203 | >100 | UACC-257 | >100 | >100 | ||
HOP-62 | 0.511 | >100 | UACC-62 | Ndd | >100 | ||
HOP-92 | 0.266 | 63.9 | Ovarian | IGROV1 | 0.0946 | >100 | |
NCI-H226 | 22.2 | >100 | OVCAR-3 | 0.0465 | 0.492 | ||
NCI-H23 | 0.273 | >100 | OVCAR-4 | 0.966 | >100 | ||
NCI-H322M | 1.63 | >100 | OVCAR-5 | 0.423 | >100 | ||
NCI-H460 | 0.356 | 91.1 | OVCAR-8 | 0.368 | >100 | ||
NCI-H522 | 0.0383 | >100 | NCI/ADR-RES | 0.0424 | >100 | ||
Colon | COLO 205 | 0.156 | 0.503 | SK-OV-3 | 3.45 | >100 | |
HCC-2998 | 0.406 | >100 | Renal | 786–0 | 0.0462 | 15.1 | |
HCT-116 | 0.0325 | >100 | A498 | 0.847 | 8.08 | ||
HCT-15 | 0.0664 | >100 | ACHN | Nd d | Nd d | ||
HT29 | 0.134 | >100 | RXF 393 | 0.0398 | 60 | ||
KM12 | 0.0596 | >100 | SN12C | 0.482 | >100 | ||
SW-620 | 0.0562 | >100 | TK-10 | 38.6 | >100 | ||
CNS | SF-268 | 0.324 | >100 | UO-31 | 0.171 | >100 | |
SF-295 | 0.0535 | >100 | Prostate | PC-3 | 0.042 | >100 | |
SF-539 | 0.028 | 0.217 | DU-145 | 0.269 | >100 | ||
SNB-19 | 0.302 | >100 | Breast | MCF7 | 0.0364 | >100 | |
SNB-75 | >100 | >100 | MDA-MB-231/ATCC | 0.355 | >100 | ||
U251 | 0.0236 | >100 | HS 578T | 0.295 | >100 | ||
BT-549 | 0.0498 | 33.8 | |||||
T-47D | Nd d | >100 | |||||
MDA-MB-468 | 0.106 | Nd d |
NCI Ref No. | Compound | Structure | MG-MID GI50 (µM) b | MG-MID TGI (µM) c | MG-MID LC50 (µM) d |
---|---|---|---|---|---|
D-613729 | CA-4 | 0.099 | 10.3 | 85.5 | |
D-792959 | 33 | 0.223 | 52.4 | 95.49 |
2.5.3. Effect of Compound 33 on the Apoptosis in MCF-7 Cells through Annexin V–FITC/PI Staining
2.5.4. Effect of Compound 33 on the Expression of Apoptosis Regulatory Proteins Bcl-2, Bax and Survivin in MCF-7 Cells
2.5.5. Effect of Compound 33 on Tubulin Polymerisation
2.6. Molecular Modelling Study for Compounds 32, 33, 42 and 43
3. Experimental Section
3.1. Chemistry
3.1.1. General Method I: Preparation of Imines 16–21 and 23–25
3.1.2. [3-(Tert-butyldimethylsilanyloxy)-4-methoxybenzylidene](3,4,5-trimethoxyphenyl)amine 22
3.1.3. General Method II: Preparation of β-Lactams 26–31, 33–41 and 43–45
3.1.4. 3-Fluoro-4-(4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (26)
3.1.5. 4-(4-Ethoxyphenyl)-3-fluoro-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (27)
3.1.6. 3-Fluoro-4-(4-(methylthio)phenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (28)
3.1.7. 4-(4-(Ethylthio)phenyl)-3-fluoro-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (29)
3.1.8. 3-Fluoro-4-(4-methoxy-3-methylphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (30)
3.1.9. 4-(3-(Tert-butyldimethylsilyl)-4-methoxyphenyl)-3-fluoro-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (31)
3.1.10. 3-Fluoro-4-(3-fluoro-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (33)
3.1.11. 4-(3-Chloro-4-methoxyphenyl)-3-fluoro-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (34)
3.1.12. 4-(3-Bromo-4-methoxyphenyl)-3-fluoro-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (35)
3.1.13. 3,3-Difluoro-4-(4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (36)
3.1.14. 4-(4-Ethoxyphenyl)-3,3-difluoro-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (37)
3.1.15. 3,3-Difluoro-4-(4-(methylthio)phenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (38)
3.1.16. 4-(4-(Ethylthio)phenyl)-3,3-difluoro-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (39)
3.1.17. 3,3-Difluoro-4-(4-methoxy-3-methylphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (40)
3.1.18. 4-(3-(tert-Butyldimethylsilyl)-4-methoxyphenyl)-3,3-difluoro-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (41)
3.1.19. 3,3-Difluoro-4-(3-fluoro-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (43)
3.1.20. 4-(3-Chloro-4-methoxyphenyl)-3,3-difluoro-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (44)
3.1.21. 4-(3-Bromo-4-methoxyphenyl)-3,3-difluoro-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (45)
3.1.22. 3-Fluoro-4-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (32)
3.1.23. 3,3-Difluoro-4-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (42)
3.2. Biochemical Evaluation of Compounds
3.2.1. Cell Culture
3.2.2. Cell Viability Assay
3.2.3. Annexin V/PI Apoptotic Assay
3.2.4. Immunofluorescence Microscopy
3.2.5. Evaluation of Expression Levels of Anti-Apoptotic Protein Bcl-2 and Pro-Apoptotic Proteins Bax and Survivin
3.2.6. Tubulin Polymerisation Assay
3.2.7. Stability Study for Compounds 33 and 39
3.2.8. Computational Procedure
3.3. X-ray Crystallography Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Antibody–drug conjugate |
ATR | Attenuated total reflection |
CA-4 | Combretastatin A-4 |
DBU | 1,8-Diazabicyclo[5.4.0]undec-7-ene |
DCM | Dichloromethane |
DMEM | Dulbecco’s modified Eagle’s medium |
DMSO | Dimethylsulfoxide |
ECACC | European Collection of Animal Cell Cultures |
ER | Estrogen receptor |
GI50 | 50% growth inhibitory concentration |
HER2 | Human epidermal growth factor receptor 2 |
IC50 | Half-maximal inhibitory concentration |
LC50 | Median lethal concentration |
MBC | Metastatic breast cancer |
MRP | Multidrug resistance protein |
MTA | Microtubule-targeting agent |
NCI | National Cancer Institute |
PBS | Phosphate-buffered saline |
PBST | Phosphate-buffered saline with Tween 20 |
P-gp | P-glycoprotein |
PI | Propidium iodide |
PIK3 | Phosphatidylinositol-4,5-bisphosphate 3-kinase |
PR | Progesterone receptor |
SRB | Sulphorhodamine B |
TBAF | tert-Butylammonium fluoride |
TBDMSCl | tert-Butyldimethylsilyl chloride |
TGI | Total growth inhibitory concentration |
THF | Tetrahydrofuran |
TLC | Thin layer chromatography |
TNBC | Triple-negative breast cancer |
References
- World Health Organization. Breast Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on 3 May 2022).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Waks, A.G.; Winer, E.P. Breast cancer treatment: A review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Godone, R.; Leitão, G.; Araújo, N.; Castelletti, C.; Lima-Filho, J.; Martins, D. Clinical and molecular aspects of breast cancer: Targets and therapies. Biomed. Pharmacother. 2018, 106, 14–34. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, J.; Peng, L.; Sahin, A.A.; Huo, L.; Ward, K.C.; O’Regan, R.; Torres, M.A.; Meisel, J.L. Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res. Treat. 2017, 161, 279–287. [Google Scholar] [CrossRef]
- DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 438–451. [Google Scholar] [CrossRef]
- Liao, M.; Zhang, J.; Wang, G.; Wang, L.; Liu, J.; Ouyang, L.; Liu, B. Small-molecule drug discovery in triple negative breast cancer: Current situation and future directions. J. Med. Chem. 2021, 64, 2382–2418. [Google Scholar] [CrossRef]
- Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 2004, 4, 253–265. [Google Scholar] [CrossRef]
- Van Vuuren, R.J.; Visagie, M.H.; Theron, A.E.; Joubert, A.M. Antimitotic drugs in the treatment of cancer. Cancer Chemother. Pharmacol. 2015, 76, 1101–1112. [Google Scholar] [CrossRef]
- Duranti, S.; Fabi, A.; Filetti, M.; Falcone, R.; Lombardi, P.; Daniele, G.; Franceschini, G.; Carbognin, L.; Palazzo, A.; Garganese, G.; et al. Breast cancer drug approvals issued by EMA: A review of clinical trials. Cancers 2021, 13, 5198. [Google Scholar] [CrossRef]
- A Study of Tucatinib vs. Placebo in Combination with Capecitabine & Trastuzumab in Patients with Advanced HER2+ Breast Cancer (HER2CLIMB). Available online: https://www.clinicaltrials.gov/ct2/show/nct02614794 (accessed on 17 November 2021).
- FDA Approves Alpelisib for Metastatic Breast Cancer. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-alpelisib-metastatic-breast-cancer (accessed on 17 November 2021).
- Andre, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef]
- FDA Approves Pembrolizumab for High-Risk Early-Stage Triple-Negative Breast Cancer. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-high-risk-early-stage-triple-negative-breast-cancer (accessed on 7 July 2022).
- Rugo, H.S.; Im, S.A.; Cardoso, F.; Cortes, J.; Curigliano, G.; Musolino, A.; Pegram, M.D.; Wright, G.S.; Saura, C.; Escriva-de-Romani, S.; et al. Efficacy of margetuximab vs. trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer: A phase 3 randomized clinical trial. JAMA Oncol. 2021, 7, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Enhertu (Trastuzumab Deruxtecan) Approved in the US for HER2-Positive Unresectable or Metastatic Breast Cancer following Two or More Prior Anti-her2 Based Regimens. Available online: https://www.astrazeneca.com/media-centre/press-releases/2019/enhertu-trastuzumab-deruxtecan-approved-in-the-us-for-her2-positive-unresectable-or-metastatic-breast-cancer-following-2-or-more-prior-anti-her2-based-regimens.html (accessed on 17 November 2021).
- Spring, L.M.; Nakajima, E.; Hutchinson, J.; Viscosi, E.; Blouin, G.; Weekes, C.; Rugo, H.; Moy, B.; Bardia, A. Sacituzumab govitecan for metastatic triple-negative breast cancer: Clinical overview and management of potential toxicities. Oncologist 2021, 26, 827–834. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, J.E.; Kalinsky, K. Antibody-drug conjugates in metastatic triple negative breast cancer: A spotlight on sacituzumab govitecan, ladiratuzumab vedotin, and trastuzumab deruxtecan. Expert Opin. Biol. Ther. 2021, 21, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004, 428, 198–202. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res. 2012, 29, 2943–2971. [Google Scholar] [CrossRef]
- Bukhari, S.N.A.; Kumar, G.B.; Revankar, H.M.; Qin, H.L. Development of combretastatins as potent tubulin polymerization inhibitors. Bioorg. Chem. 2017, 72, 130–147. [Google Scholar] [CrossRef]
- Karatoprak, G.S.; Kupeli Akkol, E.; Genc, Y.; Bardakci, H.; Yucel, C.; Sobarzo-Sanchez, E. Combretastatins: An overview of structure, probable mechanisms of action and potential applications. Molecules 2020, 25, 2560. [Google Scholar] [CrossRef]
- Greene, L.M.; Meegan, M.J.; Zisterer, D.M. Combretastatins: More than just vascular targeting agents? J. Pharmacol. Exp. Ther. 2015, 355, 212–227. [Google Scholar] [CrossRef]
- Grisham, R.; Ky, B.; Tewari, K.S.; Chaplin, D.J.; Walker, J. Clinical trial experience with CA4P anticancer therapy: Focus on efficacy, cardiovascular adverse events, and hypertension management. Gynecol. Oncol. Res. Pract. 2018, 5, 1. [Google Scholar] [CrossRef]
- Garon, E.B.; Neidhart, J.D.; Gabrail, N.Y.; de Oliveira, M.R.; Balkissoon, J.; Kabbinavar, F. A randomized phase II trial of the tumor vascular disrupting agent CA4P (fosbretabulin tromethamine) with carboplatin, paclitaxel, and bevacizumab in advanced nonsquamous non-small-cell lung cancer. OncoTargets Ther. 2016, 9, 7275–7283. [Google Scholar] [CrossRef] [Green Version]
- Blay, J.Y.; Papai, Z.; Tolcher, A.W.; Italiano, A.; Cupissol, D.; Lopez-Pousa, A.; Chawla, S.P.; Bompas, E.; Babovic, N.; Penel, N.; et al. Ombrabulin plus cisplatin versus placebo plus cisplatin in patients with advanced soft-tissue sarcomas after failure of anthracycline and ifosfamide chemotherapy: A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2015, 16, 531–540. [Google Scholar] [CrossRef]
- Bates, D.; Eastman, A. Microtubule destabilising agents: Far more than just antimitotic anticancer drugs. Br. J. Clin. Pharmacol. 2017, 83, 255–268. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Q.; Li, W. Recent advances in heterocyclic tubulin inhibitors targeting the colchicine binding site. Anti-Cancer Agents Med. Chem. 2016, 16, 1325–1338. [Google Scholar] [CrossRef]
- McLoughlin, E.C.; O’Boyle, N.M. Colchicine-binding site inhibitors from chemistry to clinic: A review. Pharmaceuticals 2020, 13, 8. [Google Scholar] [CrossRef]
- Sherbet, G.V. Combretastatin analogues in cancer biology: A prospective view. J. Cell. Biochem. 2020, 121, 2127–2138. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Carr, M.; Greene, L.M.; Bergin, O.; Nathwani, S.M.; McCabe, T.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Synthesis and evaluation of azetidinone analogues of combretastatin A-4 as tubulin targeting agents. J. Med. Chem. 2010, 53, 8569–8584. [Google Scholar] [CrossRef]
- Wang, S.; Malebari, A.M.; Greene, T.F.; O’Boyle, N.M.; Fayne, D.; Nathwani, S.M.; Twamley, B.; McCabe, T.; Keely, N.O.; Zisterer, D.M. 3-vinylazetidin-2-ones: Synthesis, antiproliferative and tubulin destabilizing activity in MCF-7 and MDA-MB-231 breast cancer cells. Pharmaceuticals 2019, 12, 56. [Google Scholar] [CrossRef]
- Malebari, A.M.; Fayne, D.; Nathwani, S.M.; O’Connell, F.; Noorani, S.; Twamley, B.; O’Boyle, N.M.; O’Sullivan, J.; Zisterer, D.M.; Meegan, M.J. β-lactams with antiproliferative and antiapoptotic activity in breast and chemoresistant colon cancer cells. Eur. J. Med. Chem. 2020, 189, 112050. [Google Scholar] [CrossRef]
- Malebari, A.M.; Greene, L.M.; Nathwani, S.M.; Fayne, D.; O’Boyle, N.M.; Wang, S.; Twamley, B.; Zisterer, D.M.; Meegan, M.J. β-lactam analogues of combretastatin A-4 prevent metabolic inactivation by glucuronidation in chemoresistant HT-29 colon cancer cells. Eur. J. Med. Chem. 2017, 130, 261–285. [Google Scholar] [CrossRef]
- Arya, N.; Jagdale, A.Y.; Patil, T.A.; Yeramwar, S.S.; Holikatti, S.S.; Dwivedi, J.; Shishoo, C.J.; Jain, K.S. The chemistry and biological potential of azetidin-2-ones. Eur. J. Med. Chem. 2014, 74, 619–656. [Google Scholar] [CrossRef]
- Nagpal, R.; Bhalla, J.; Bari, S.S. A comprehensive review on C-3 functionalization of β-lactams. Curr. Org. Synth. 2019, 16, 3–16. [Google Scholar] [CrossRef]
- Tang, H.; Cheng, J.; Liang, Y.; Wang, Y. Discovery of a chiral fluorinated azetidin-2-one as a tubulin polymerisation inhibitor with potent antitumour efficacy. Eur. J. Med. Chem. 2020, 197, 112323. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, Y. Recent advances in β-lactam derivatives as potential anticancer agents. Curr. Top. Med. Chem. 2020, 20, 1468–1480. [Google Scholar] [CrossRef]
- Visconti, R.; Grieco, D. Fighting tubulin-targeting anticancer drug toxicity and resistance. Endocr. Relat. Cancer 2017, 24, T107–T117. [Google Scholar] [CrossRef]
- Gutman, H.; Bazylevich, A.; Prasad, C.; Dorfman, O.; Hesin, A.; Marks, V.; Patsenker, L.; Gellerman, G. Discovery of dolastatinol: A synthetic analog of dolastatin 10 and low nanomolar inhibitor of tubulin polymerization. ACS Med. Chem. Lett. 2021, 12, 1596–1604. [Google Scholar] [CrossRef]
- Banerjee, S.; Mahmud, F.; Deng, S.; Ma, L.; Yun, M.K.; Fakayode, S.O.; Arnst, K.E.; Yang, L.; Chen, H.; Wu, Z.; et al. X-ray crystallography-guided design, antitumor efficacy, and QSAR analysis of metabolically stable cyclopenta-pyrimidinyl dihydroquinoxalinone as a potent tubulin polymerization inhibitor. J. Med. Chem. 2021, 64, 13072–13095. [Google Scholar] [CrossRef]
- Deng, S.; Krutilina, R.I.; Wang, Q.; Lin, Z.; Parke, D.N.; Playa, H.C.; Chen, H.; Miller, D.D.; Seagroves, T.N.; Li, W. An orally available tubulin inhibitor, VERU-111, suppresses triple-negative breast cancer tumor growth and metastasis and bypasses taxane resistance. Mol. Cancer Ther. 2020, 19, 348–363. [Google Scholar] [CrossRef]
- Wang, Q.; Arnst, K.E.; Wang, Y.; Kumar, G.; Ma, D.; White, S.W.; Miller, D.D.; Li, W.; Li, W. Structure-guided design, synthesis, and biological evaluation of (2-(1H-indol-3-yl)-1H-imidazol-4-yl)(3,4,5-trimethoxyphenyl) methanone (ABI-231) analogues targeting the colchicine binding site in tubulin. J. Med. Chem. 2019, 62, 6734–6750. [Google Scholar] [CrossRef] [PubMed]
- Sabizabulin for COVID-19. Available online: https://verupharma.com/pipeline/veru-111-for-covid-19/ (accessed on 22 November 2021).
- Arnst, K.E.; Wang, Y.; Hwang, D.J.; Xue, Y.; Costello, T.; Hamilton, D.; Chen, Q.; Yang, J.; Park, F.; Dalton, J.T.; et al. A potent, metabolically stable tubulin inhibitor targets the colchicine binding site and overcomes taxane resistance. Cancer Res. 2018, 78, 265–277. [Google Scholar] [CrossRef] [PubMed]
- A phase I/II Trial of Crolibulin (EPC2407) Plus Cisplatin in Adults with Solid Tumors with a Focus on Anaplastic Thyroid Cancer (ATC). 2021. Available online: https://clinicaltrials.gov/ct2/show/nct01240590 (accessed on 14 September 2021).
- Wang, Y.; Zhang, H.; Gigant, B.; Yu, Y.; Wu, Y.; Chen, X.; Lai, Q.; Yang, Z.; Chen, Q.; Yang, J. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery. FEBS J. 2016, 283, 102–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohnacker, T.; Prota, A.E.; Beaufils, F.; Burke, J.E.; Melone, A.; Inglis, A.J.; Rageot, D.; Sele, A.M.; Cmiljanovic, V.; Cmiljanovic, N.; et al. Deconvolution of buparlisib’s mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nat. Commun. 2017, 8, 14683. [Google Scholar] [CrossRef]
- Arnst, K.E.; Banerjee, S.; Chen, H.; Deng, S.; Hwang, D.J.; Li, W.; Miller, D.D. Current advances of tubulin inhibitors as dual acting small molecules for cancer therapy. Med. Res. Rev. 2019, 39, 1398–1426. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, Y.; Li, D.; Yang, J.; Lei, L.; Yan, W.; Zheng, W.; Tang, M.; Shi, M.; Zhang, R.; et al. Design, synthesis, and bioactivity evaluation of dual-target inhibitors of tubulin and SRC kinase guided by crystal structure. J. Med. Chem. 2021, 64, 8127–8141. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, W.; Qiu, Q.; Su, Z.; Tang, M.; Bai, P.; Si, W.; Zhu, Z.; Liu, Y.; Yang, J.; et al. Discovery of a series of hydroxamic acid-based microtubule destabilizing agents with potent antitumor activity. J. Med. Chem. 2021, 64, 15379–15401. [Google Scholar] [CrossRef]
- Wang, K.; Zhong, H.; Li, N.; Yu, N.; Wang, Y.; Chen, L.; Sun, J. Discovery of novel anti-breast-cancer inhibitors by synergistically antagonizing microtubule polymerization and aryl hydrocarbon receptor expression. J. Med. Chem. 2021, 64, 12964–12977. [Google Scholar] [CrossRef]
- Zheng, L.; Ren, R.; Sun, X.; Zou, Y.; Shi, Y.; Di, B.; Niu, M.M. Discovery of a dual tubulin and poly(adp-ribose) polymerase-1 inhibitor by structure-based pharmacophore modeling, virtual screening, molecular docking, and biological evaluation. J. Med. Chem. 2021, 64, 15702–15715. [Google Scholar] [CrossRef]
- Meanwell, N.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 2018, 61, 5822–5880. [Google Scholar] [CrossRef]
- Inoue, M.; Sumii, Y.; Shibata, N. Contribution of organofluorine compounds to pharmaceuticals. ACS Omega 2020, 5, 10633–10640. [Google Scholar] [CrossRef]
- Alloatti, D.; Giannini, G.; Cabri, W.; Lustrati, I.; Marzi, M.; Ciacci, A.; Gallo, G.; Tinti, M.O.; Marcellini, M.; Riccioni, T.; et al. Synthesis and biological activity of fluorinated combretastatin analogues. J. Med. Chem. 2008, 51, 2708–2721. [Google Scholar] [CrossRef]
- Carr, M.; Greene, L.M.; Knox, A.J.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Lead identification of conformationally restricted β-lactam type combretastatin analogues: Synthesis, antiproliferative activity and tubulin targeting effects. Eur. J. Med. Chem. 2010, 45, 5752–5766. [Google Scholar] [CrossRef]
- Hosseyni, S.; Jarrahpour, A. Recent advances in β-lactam synthesis. Org. Biomol. Chem. 2018, 16, 6840–6852. [Google Scholar] [CrossRef]
- Leite, T.H.O.; Saraiva, M.F.; Pinheiro, A.C.; de Souza, M.V.N. Monocyclic β-lactam: A review on synthesis and potential biological activities of a multitarget core. Mini Rev. Med. Chem. 2020, 20, 1653–1682. [Google Scholar] [CrossRef]
- Pitts, C.R.; Lectka, T. Chemical synthesis of β-lactams: Asymmetric catalysis and other recent advances. Chem. Rev. 2014, 114, 7930–7953. [Google Scholar] [CrossRef]
- Deketelaere, S.; Van Nguyen, T.; Stevens, C.V.; D’Hooghe, M. Synthetic approaches toward monocyclic 3-amino-β-lactams. ChemistryOpen 2017, 6, 301–319. [Google Scholar] [CrossRef]
- Georg, G.I.; Cheruvallath, Z.S.; Himes, R.H.; Mejillano, M.R.; Burke, C.T. Synthesis of biologically active taxol analogues with modified phenylisoserine side chains. J. Med. Chem. 1992, 35, 4230–4237. [Google Scholar] [CrossRef]
- Tarui, A. Stereoselective synthesis of multi-substituted fluoro-β-lactams and their conversion to fluorinated β-amino acid core. Yakugaku Zasshi 2015, 135, 1245–1253. [Google Scholar] [CrossRef]
- Tarui, A. Stereoselective synthesis of multisubstituted α-fluoro-β-lactams. Curr. Org. Chem. 2020, 24, 2169–2180. [Google Scholar] [CrossRef]
- Tantawy, A.H.; El-Behairy, M.F.; Abd-Allah, W.H.; Jiang, H.; Wang, M.Q.; Marzouk, A.A. Design, synthesis, biological evaluation, and computational studies of novel fluorinated candidates as PI3Kinhibitors: Targeting fluorophilic binding sites. J. Med. Chem. 2021, 64, 17468–17485. [Google Scholar] [CrossRef]
- Lara-Ochoa, F.; Espinosa-Pérez, G. A new synthesis of combretastatins A-4 and AVE-8062A. Tetrahedron Lett. 2007, 48, 7007–7010. [Google Scholar] [CrossRef]
- Combes, S.; Barbier, P.; Douillard, S.; McLeer-Florin, A.; Bourgarel-Rey, V.; Pierson, J.T.; Fedorov, A.Y.; Finet, J.P.; Boutonnat, J.; Peyrot, V. Synthesis and biological evaluation of 4-arylcoumarin analogues of combretastatins. Part 2. J. Med. Chem. 2011, 54, 3153–3162. [Google Scholar] [CrossRef]
- Vaske, Y.S.; Mahoney, M.E.; Konopelski, J.P.; Rogow, D.L.; McDonald, W.J. Enantiomerically pure trans-β-lactams from α-amino acids via compact fluorescent light (CFL) continuous-flow photolysis. J. Am. Chem. Soc. 2010, 132, 11379–11385. [Google Scholar] [CrossRef] [PubMed]
- Twamley, B.; O’Boyle, N.M.; Meegan, M.J. Azetidin-2-ones: Structures of anti-mitotic compounds based on the 1-(3,4,5-tri-meth-oxy-phen-yl)azetidin-2-one core. Acta Crystallogr. E Crystallogr. Commun. 2020, 76, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Zajac, M.; Jelinska, A.; Cielecka-Piontek, J.; Oszczapowicz, I. Stability of aztreonam in azactam. Farmaco 2005, 60, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, B.; Bahuguna, R.; Wadhwa, L.; Saxena, R. Stress degradation studies on ezetimibe and development of a validated stability-indicating HPLC assay. J. Pharm. Biomed. Anal. 2006, 41, 1037–1040. [Google Scholar] [CrossRef] [PubMed]
- Pipeline Pilot Overview. Available online: https://www.3ds.com/fileadmin/products-services/biovia/pdf/biovia-pipeline%20pilot-pipeline-pilot-overview.pdf (accessed on 24 January 2022).
- O’Boyle, N.M.; Greene, L.M.; Keely, N.O.; Wang, S.; Cotter, T.S.; Zisterer, D.M.; Meegan, M.J. Synthesis and biochemical activities of antiproliferative amino acid and phosphate derivatives of microtubule-disrupting β-lactam combretastatins. Eur. J. Med. Chem. 2013, 62, 705–721. [Google Scholar] [CrossRef] [PubMed]
- Baell, J.B.; Nissink, J.W.M. Seven year itch: Pan-assay interference compounds (PAINS) in 2017-utility and limitations. ACS Chem. Biol. 2018, 13, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.W.; Ward, S.E. (Eds.) The Handbook of Medicinal Chemistry: Principles and Practice; Royal Society of Chemistry: London, UK, 2014. [Google Scholar]
- Cushman, M.; Nagarathnam, D.; Gopal, D.; He, H.M.; Lin, C.M.; Hamel, E. Synthesis and evaluation of analogues of (z)-1-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene as potential cytotoxic and antimitotic agents. J. Med. Chem. 1992, 35, 2293–2306. [Google Scholar] [CrossRef]
- Ma, M.; Sun, L.; Lou, H.; Ji, M. Synthesis and biological evaluation of combretastatin a-4 derivatives containing a 3′-O-substituted carbonic ether moiety as potential antitumor agents. Chem. Cent. J. 2013, 7, 179. [Google Scholar] [CrossRef]
- Messaoudi, S.; Treguier, B.; Hamze, A.; Provot, O.; Peyrat, J.F.; De Losada, J.R.; Liu, J.M.; Bignon, J.; Wdzieczak-Bakala, J.; Thoret, S.; et al. Isocombretastatins a versus combretastatins a: The forgotten isoCA-4 isomer as a highly promising cytotoxic and antitubulin agent. J. Med. Chem. 2009, 52, 4538–4542. [Google Scholar] [CrossRef]
- Hughes, L.; Malone, C.; Chumsri, S.; Burger, A.M.; McDonnell, S. Characterisation of breast cancer cell lines and establishment of a novel isogenic subclone to study migration, invasion and tumourigenicity. Clin. Exp. Metastasis 2008, 25, 549–557. [Google Scholar] [CrossRef]
- National Cancer Institute. Biological Testing Branch; Developmental Therapeutics Program; National Cancer Institute: Bethesda, MD, USA. Available online: https://dtp.cancer.gov (accessed on 15 September 2021).
- Lee, S.Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016, 3, 198–210. [Google Scholar] [CrossRef]
- Compare Analysis. Available online: https://dtp.cancer.gov/databases_tools/compare.htm (accessed on 15 February 2022).
- Bates, S.E.; Fojo, A.T.; Weinstein, J.N.; Myers, T.G.; Alvarez, M.; Pauli, K.D.; Chabner, B.A. Molecular targets in the National Cancer Institute Drug Screen. J. Cancer Res. Clin. Oncol. 1995, 121, 495–500. [Google Scholar] [CrossRef]
- Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 2006, 6, 813–823. [Google Scholar] [CrossRef]
- Pena-Blanco, A.; Garcia-Saez, A.J. Bax, Bak and beyond—Mitochondrial performance in apoptosis. FEBS J. 2018, 285, 416–431. [Google Scholar] [CrossRef]
- Roberts, A.W. Therapeutic development and current uses of Bcl-2 inhibition. Hematol. Am. Soc. Hematol. Educ. Program 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Kale, J.; Osterlund, E.J.; Andrews, D.W. Bcl-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 2018, 25, 65–80. [Google Scholar] [CrossRef]
- Mori, A.; Wada, H.; Nishimura, Y.; Okamoto, T.; Takemoto, Y.; Kakishita, E. Expression of the antiapoptosis gene survivin in human leukemia. Int. J. Hematol. 2002, 75, 161–165. [Google Scholar] [CrossRef]
- Jha, K.; Shukla, M.; Pandey, M. Survivin expression and targeting in breast cancer. Surg. Oncol. 2012, 21, 125–131. [Google Scholar] [CrossRef]
- Jaiswal, P.K.; Goel, A.; Mittal, R.D. Survivin: A molecular biomarker in cancer. Indian J. Med. Res. 2015, 141, 389–397. [Google Scholar]
- Li, F.; Aljahdali, I.; Ling, X. Cancer therapeutics using survivin BIRC5 as a target: What can we do after over two decades of study? J. Exp. Clin. Cancer Res. 2019, 38, 368. [Google Scholar] [CrossRef]
- Hawkins, P.C.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer generation with omega: Algorithm and validation using high quality structures from the protein databank and Cambridge Structural Database. J. Chem. Inf. Model. 2010, 50, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Openeye Scientific Software, Inc. Omega 4.1.0. 2. Openeye Scientific Software, Inc.: Santa Fe, NM, USA. Available online: http://www.eyesopen.com(accessed on 14 September 2021).
- McGann, M. FRED Pose prediction and virtual screening accuracy. J. Chem. Inf. Model. 2011, 51, 578–596. [Google Scholar] [CrossRef] [PubMed]
- Wienecke, A.; Bacher, G. Indibulin, a novel microtubule inhibitor, discriminates between mature neuronal and nonneuronal tubulin. Cancer Res. 2009, 69, 171–177. [Google Scholar] [CrossRef]
- Bruker AXC Inc. Bruker APEX 2 v2012.12-0, Bruker AXC Inc.: Madison, WI, USA, 2012.
- Sheldrick, G.M. SADABS, Bruker AXS Inc.: Madison, WI, USA; University of Göttingen: Göttingen, Germany, 2014.
- Sheldrick, G.M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. Olex2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Compound | Structure | X-ray Representation |
---|---|---|
18 | ||
23 |
Compound | Structure | X-ray Representation |
---|---|---|
33 | ||
43 |
Identification Code | 18 | 23 | 33 | 43 |
---|---|---|---|---|
CCDC number | 2101671 | 2101672 | 1537939 | 1537940 |
Empirical formula | C17H19NO3S | C17H18NO4F | C19H19F2NO5 | C19H18F3NO5 |
M (g/mol) | 317.39 | 319.32 | 379.35 | 397.34 |
T (K) | 100 (2) | 100 (2) | 100 (2) | 100 (2) |
Crystal system | Monoclinic | Monoclinic | Monoclinic | Triclinic |
SG | P21/c | P21/c | P21/n | P |
a (Å) | 14.1344 (4) | 14.2025 (3) | 9.9882 (4) | 9.2060 (3) |
b (Å) | 15.5489 (4) | 15.1955 (4) | 9.9623 (4) | 9.6842 (3) |
c (Å) | 7.2569 (2) | 7.2677 (2) | 18.1462 (7) | 12.3233 (4) |
α (°) | 90 | 90 | 90 | 104.832 (2) |
β (°) | 93.9918 (10) | 97.3324 (8) | 97.1621 (13) | 96.939 (2) |
γ (°) | 90 | 90 | 90 | 117.376 (2) |
V (Å3) | 1591.01 (8) | 1555.65 (7) | 1791.56 (12) | 905.97 (5) |
Z | 4 | 4 | 4 | 2 |
Dcalc (g/cm3) | 1.325 | 1.363 | 1.406 | 1.457 |
μ (mm−1) | 0.215 | 0.105 | 0.115 | 1.083 |
F(000) | 672 | 672.0 | 792.0 | 412.0 |
Radiation | Mo Kα (λ = 0.71073) | Mo Kα (λ = 0.71073) | Mo Kα (λ = 0.71073) | Cu Kα (λ = 1.54178) |
Reflections collected | 96322 | 73658 | 30695 | 11320 |
Independent reflections | 4710 Rint = 0.0376, Rsigma = 0.0139 | 4123 Rint = 0.0304, Rsigma = 0.0105 | 5242 Rint = 0.0417, Rsigma = 0.0363 | 3379 Rint = 0.0289, Rsigma = 0.0266 |
Data/restraints/parameters | 4710/0/199 | 4123/0/216 | 5242/0/248 | 3379/0/257 |
Goodness-of-fit on F2 (S) | 1.039 | 1.074 | 1.023 | 1.060 |
Final R indexes [I ≥ 2σ (I)] * | R1 = 0.0323, wR2 = 0.0824 | R1 = 0.0332, wR2 = 0.0950 | R1 = 0.0393, wR2 = 0.0886 | R1 = 0.0404, wR2 = 0.1138 |
Final R indexes (all data) | R1 = 0.0437, wR2 = 0.0899 | R1 = 0.0404, wR2 = 0.1014 | R1 = 0.0695, wR2 = 0.0999 | R1 = 0.0452, wR2 = 0.1186 |
Largest diff. peak/hole/e Å−3 | 0.44/−0.32 | 0.37/−0.20 | 0.38/−0.26 | 0.27/−0.27 |
Ring Plane Normal AB Angle (°) | Ring A to Central Torsion (°) a* | Ring B to Central Torsion (°) b* | Ring AB Torsion (°) c* | Ring BC Torsion (°) d,e* | |
---|---|---|---|---|---|
33 R = H | 97.60(4) | −154.97(12) | −161.40(11) | 62.36(16) | −119.43(11) |
43 R = F | 90.40(6) | 156.49(16) | 178.40(17) | −76.6(2) | 130.71(15) |
CA-4 | - | - | - | 55 | - |
Colchicine | - | - | - | 53 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malebari, A.M.; Duffy Morales, G.; Twamley, B.; Fayne, D.; Khan, M.F.; McLoughlin, E.C.; O’Boyle, N.M.; Zisterer, D.M.; Meegan, M.J. Synthesis, Characterisation and Mechanism of Action of Anticancer 3-Fluoroazetidin-2-ones. Pharmaceuticals 2022, 15, 1044. https://doi.org/10.3390/ph15091044
Malebari AM, Duffy Morales G, Twamley B, Fayne D, Khan MF, McLoughlin EC, O’Boyle NM, Zisterer DM, Meegan MJ. Synthesis, Characterisation and Mechanism of Action of Anticancer 3-Fluoroazetidin-2-ones. Pharmaceuticals. 2022; 15(9):1044. https://doi.org/10.3390/ph15091044
Chicago/Turabian StyleMalebari, Azizah M., Gabriela Duffy Morales, Brendan Twamley, Darren Fayne, Mohemmed Faraz Khan, Eavan C. McLoughlin, Niamh M. O’Boyle, Daniela M. Zisterer, and Mary J. Meegan. 2022. "Synthesis, Characterisation and Mechanism of Action of Anticancer 3-Fluoroazetidin-2-ones" Pharmaceuticals 15, no. 9: 1044. https://doi.org/10.3390/ph15091044
APA StyleMalebari, A. M., Duffy Morales, G., Twamley, B., Fayne, D., Khan, M. F., McLoughlin, E. C., O’Boyle, N. M., Zisterer, D. M., & Meegan, M. J. (2022). Synthesis, Characterisation and Mechanism of Action of Anticancer 3-Fluoroazetidin-2-ones. Pharmaceuticals, 15(9), 1044. https://doi.org/10.3390/ph15091044