The Distribution of Rare Earth Elements in Coal Fly Ash Determined by LA-ICP-MS and Implications for Its Economic Significance
<p>The spatial resolution and detection limit of analytical techniques for the elemental composition (modified from [<a href="#B24-sustainability-17-00275" class="html-bibr">24</a>]).</p> "> Figure 2
<p>The mineralogy and LA-ICP-MS analysis spot of different phases in coal fly ash under reflected light. (<b>A</b>) S1, Al-Si-Fe; (<b>B</b>) S2, Fe-oxide; (<b>C</b>) S3, Si-Al; (<b>D</b>) S4, Al-Si-Ca-Ti; (<b>E</b>) S5, Al-Si; (<b>F</b>) S6, Si-Al; (<b>G</b>) S7, Al-Si-Ca; (<b>H</b>) S8, SiO<sub>2</sub>; (<b>I</b>) S9, Fe-oxide; (<b>J</b>) S10, Fe-oxide; (<b>K</b>) S11, SiO<sub>2</sub>; (<b>L</b>) S12, quartz.</p> "> Figure 3
<p>The in situ trace elements of constituents of coal ash.</p> "> Figure 4
<p>The distribution patterns of REE in the aluminosilicates (<b>A</b>), Ca, (Fe)-enriched aluminosilicates (<b>B</b>), Fe-oxides (<b>C</b>), and SiO<sub>2</sub>/quartz (<b>D</b>).</p> "> Figure 5
<p>The distribution of REY of fly ash (<b>A</b>) measured by ICP-MS and that of aluminosilicates, Ca (<b>B</b>), (Fe)-enriched aluminosilicates (<b>C</b>), and Fe-oxides (<b>D</b>) was determined by LA-ICP-MS.</p> "> Figure 6
<p>(<b>A</b>) The contents and proportions of LREY, MERY, and HREY in coal and coal combustion products. (<b>B</b>) The contents of LREY, MERY, and HREY in the fly ash phases. (<b>C</b>) The distribution patterns of REE in feed coal, combustion products, and fly ash phases.</p> "> Figure 7
<p>The distribution of average concentration of REE in China, the U.S., Europe, others, and world coal fly ash.</p> "> Figure 8
<p>The distribution of total coal combustion production (CCP) used by category.</p> ">
Abstract
:1. Introduction
2. Sample and Methods
2.1. Optical Observation
2.2. EPMA
2.3. LA-ICP-MS
2.4. ICP-MS
3. Results
3.1. Mineralogy in Coal Fly Ash
3.2. Major Element Composition
3.3. Trace Elements Concentration
3.4. Distribution Mode of Rare Earth Elements and Y
4. Discussion
4.1. Feasibility
4.2. Calibration Method
4.3. Advantages
4.4. Implications for REY Recovery
4.5. Implications for Economic Significance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
References
- Ministry of Natural Resources C. The Compilation of the China Mineral Resources; Ministry of Natural Resources China: Beijing, China, 2020.
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal. Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Adamczyk, Z.; Komorek, J.; Białecka, B.; Nowak, J.; Klupa, A. Assessment of the potential of polish fly ashes as a source of rare earth elements. Ore Geol. Rev. 2020, 124, 103638. [Google Scholar] [CrossRef]
- Hower, J.C.; Groppo, J.G.; Henke, K.R.; Hood, M.M.; Eble, C.F.; Honaker, R.Q.; Zhang, W.; Qian, D. Notes on the potential for the concentration of rare earth elements and yttrium in coal combustion fly ash. Minerals 2015, 5, 356–366. [Google Scholar] [CrossRef]
- Reedy, R.C.; Scanlon, B.R.; Bagdonas, D.A.; Hower, J.C.; James, D.; Kyle, J.R.; Uhlman, K. Coal ash resources and potential for rare earth element production in the united states. Int. J. Coal Sci. Technol. 2024, 11, 11. [Google Scholar] [CrossRef]
- Hower, J.C.; Qian, D.; Briot, N.J.; Henke, K.R.; Hood, M.M.; Taggart, R.K.; Hsu-Kim, H. Rare earth element associations in the kentucky state university stoker ash. Int. J. Coal Geol. 2018, 189, 75–82. [Google Scholar] [CrossRef]
- Lin, R.; Howard, B.H.; Roth, E.A.; Bank, T.L.; Granite, E.J.; Soong, Y. Enrichment of rare earth elements from coal and coal by-products by physical separations. Fuel 2017, 200, 506–520. [Google Scholar] [CrossRef]
- Taggart, R.K.; Hower, J.C.; Hsu-Kim, H. Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash. Int. J. Coal Geol. 2018, 196, 106–114. [Google Scholar] [CrossRef]
- Taggart, R.K.; Hower, J.C.; Dwyer, G.S.; Hsu-Kim, H. Trends in the rare earth element content of u.s.-Based coal combustion fly ashes. Environ. Sci. Technol. 2016, 50, 5919–5926. [Google Scholar] [CrossRef]
- Yao, Z.; Xia, M.; Sarker, P.; Chen, T. A review of the alumina recovery from coal fly ash, with a focus in china. Fuel 2014, 120, 74–85. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Jiang, J.; Hower, J.C.; Song, X.; Jiang, Y.; Wang, X.; Gornostaeva, T.; Li, X.; et al. Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-ge coals. Int. J. Coal Geol. 2014, 121, 79–97. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S.; Sun, Y.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Franus, W.; Wiatros-Motyka, M.M.; Wdowin, M. Coal fly ash as a resource for rare earth elements. Environ. Sci. Pollut. Res. 2015, 22, 9464–9474. [Google Scholar] [CrossRef]
- Gollakota, A.R.; Volli, V.; Shu, C.-M. Progressive utilisation prospects of coal fly ash: A review. Sci. Total Env. 2019, 672, 951–989. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Tian, C.; Xiong, Z.; Zhao, Y.; Zhang, J. Mineral changes and trace element releases during extraction of alumina from high aluminum fly ash in inner mongolia, china. Int. J. Coal Geol. 2016, 166, 96–107. [Google Scholar] [CrossRef]
- Lange, C.N.; Camargo, I.M.C.; Figueiredo, A.M.G.M.; Castro, L.; Vasconcellos, M.B.A.; Ticianelli, R.B. A brazilian coal fly ash as a potential source of rare earth elements. J. Radioanal. Nucl. Chem. 2017, 311, 1235–1241. [Google Scholar] [CrossRef]
- Ma, Z.; Shan, X.; Cheng, F. Distribution characteristics of valuable elements, al, li, and ga, and rare earth elements in feed coal, fly ash, and bottom ash from a 300 MW circulating fluidized bed boiler. ACS Omega 2019, 4, 6854–6863. [Google Scholar] [CrossRef]
- Strzałkowska, E. Ashes qualified as a source of selected critical elements (REY, Co, Ga, V). Energies 2023, 16, 3331. [Google Scholar] [CrossRef]
- Hower, J.; Groppo, J.; Joshi, P.; Dai, S.; Moecher, D.; Johnston, M. Location of cerium in coal-combustion fly ashes: Implications for recovery of lanthanides. Coal Combust. Gasif. Prod. 2003, 5, 73–78. [Google Scholar] [CrossRef]
- ASTM C618-22; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM: West Conshohocken, PA, USA, 2015.
- Vermeesch, P. Statistics for la-icp-ms based fission track dating. Chem. Geol. 2017, 456, 19–27. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Horstwood, M.S.; Cottle, J.M. Advances in isotope ratio determination by la-icp-ms. Elements 2016, 12, 317–322. [Google Scholar] [CrossRef]
- Ferraro, A.; Siciliano, A.; Spampinato, M.; Morello, R.; Trancone, G.; Race, M.; Guida, M.; Fabbricino, M.; Spasiano, D.; Fratino, U. A multi-disciplinary approach based on chemical characterization of foreshore sediments, ecotoxicity assessment and statistical analyses for environmental monitoring of marine-coastal areas. Mar. Environ. Res. 2024, 202, 106780. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-H.; Li, Q.-L. Major advances in microbeam analytical techniques and their applications in earth science. Sci. Bull. 2016, 61, 1785–1787. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.; Yang, Y.; Hu, Z. Calibration and correction of la-icp-ms and la-mc-icp-ms analyses for element contents and isotopic ratios. Solid Earth Sci. 2016, 1, 5–27. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Zong Gao, C.; Gao, S.; Xu, J.; Chen, H. Reappraisement and refinement of zircon u-pb isotope and trace element analyses by la-icp-ms. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Miliszkiewicz, N.; Walas, S.; Tobiasz, A. Current approaches to calibration of la-icp-ms analysis. J. Anal. At. Spectrom. 2015, 30, 327–338. [Google Scholar] [CrossRef]
- Dai, S.; Zhao, L.; Hower, J.C.; Johnston, M.N.; Song, W.; Wang, P.; Zhang, S. Petrology, mineralogy, and chemistry of size-fractioned fly ash from the jungar power plant, inner mongolia, china, with emphasis on the distribution of rare earth elements. Energy Fuels 2014, 28, 1502–1514. [Google Scholar] [CrossRef]
- Mardon, S.M.; Hower, J.C. Impact of coal properties on coal combustion by-product quality: Examples from a kentucky power plant. Int. J. Coal Geol. 2004, 59, 153–169. [Google Scholar] [CrossRef]
- Hower, J.C.; Dai, S.; Seredin, V.V.; Zhao, L.; Kostova, I.J.; Silva, L.F.O.; Gurdal, G. A note on the occurrence of yttrium and rare earth elements in coal combustion products. Coal Combust Gasif Prod. 2013, 5, 39–47. [Google Scholar]
- Hower, J.C.; Groppo, J.G.; Hsu-Kim, H.; Taggart, R.K. Distribution of rare earth elements in fly ash derived from the combustion of illinois basin coals. Fuel 2021, 289, 119990. [Google Scholar] [CrossRef]
- Stoy, L.; Diaz, V.; Huang, C.-H. Preferential recovery of rare-earth elements from coal fly ash using a recyclable ionic liquid. Environ. Sci. Technol. 2021, 55, 9209–9220. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhou, C.; Tang, M.; Cao, S.; Liu, C.; Zhang, N.; Wen, M.; Luo, Y.; Hu, T.; Ji, W. Study on the modes of occurrence of rare earth elements in coal fly ash by statistics and a sequential chemical extraction procedure. Fuel 2019, 237, 555–565. [Google Scholar] [CrossRef]
- Perämäki, S.E.; Tiihonen, A.J.; Väisänen, A.O. Occurrence and recovery potential of rare earth elements in finnish peat and biomass combustion fly ash. J. Geochem. Explor. 2019, 201, 71–78. [Google Scholar] [CrossRef]
- Smith, R.C.; Taggart, R.K.; Hower, J.C.; Wiesner, M.R.; Hsu-Kim, H. Selective recovery of rare earth elements from coal fly ash leachates using liquid membrane processes. Environ. Sci. Technol. 2019, 53, 4490–4499. [Google Scholar] [CrossRef]
- Lin, R.; Stuckman, M.; Howard, B.H.; Bank, T.L.; Roth, E.A.; Macala, M.K.; Lopano, C.; Soong, Y.; Granite, E.J. Application of sequential extraction and hydrothermal treatment for characterization and enrichment of rare earth elements from coal fly ash. Fuel 2018, 232, 124–133. [Google Scholar] [CrossRef]
- Jayaranjan, M.L.D.; van Hullebusch, E.D.; Annachhatre, A.P. Reuse options for coal fired power plant bottom ash and fly ash. Rev. Environ. Sci. Bio. Technol. 2014, 13, 467–486. [Google Scholar] [CrossRef]
- Vilakazi, A.Q.; Ndlovu, S.; Chipise, L.; Shemi, A. The recycling of coal fly ash: A review on sustainable developments and economic considerations. Sustainability 2022, 14, 1958. [Google Scholar] [CrossRef]
- Blissett, R. Coal Fly Ash and the Circular Economy. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2015. [Google Scholar]
- van Wyk, P.; Bradshaw, S.; Dorfling, C.; Ghosh, T.; Akdogan, G. Characterisation and hydrochloric acid leaching of rare earth elements in discard coal and coal fly ash. Minerals 2024, 14, 1070. [Google Scholar] [CrossRef]
- Ojonimi, T.I.; Pesonen, J.; Asuke, F.; Mohammed, R.A.; Okeme, I.; Groppo, J. Evaluation of rare earth elements (REEs) in selected nigerian coal fly ash: A prelude to extraction and waste management. Environ. Sci. Adv. 2025. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, S.; Xie, N.; Yang, L.; Wang, Q.; Wen, Y.; Chen, H.; Tang, Y. Green approach for rare earth element (REE) recovery from coal fly ash. Environ. Sci. Technol. 2023, 57, 5414–5423. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wu, Y.; Ma, S.; Zheng, S.; Zhang, Y.; Chu, P.K. Utilization of coal fly ash in china: A mini-review on challenges and future directions. Environ. Sci. Pollut. Res. Int. 2021, 28, 18727–18740. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, Z.; Komorek, J.; Kokowska-Pawłowska, M.; Nowak, J. Distribution of rare-earth elements in ashes produced in the coal combustion process from power boilers. Energies 2023, 16, 2696. [Google Scholar] [CrossRef]
Number | Phase | O | Na | Mg | Al | Si | Ca | Ti | Fe | Al/Si | Fe/Si |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Fe-enriched Al-Si | 51.85 | 1.78 | 6.28 | 12.71 | 12.43 | 0.49 | 6.37 | 0.49 | 0.50 | |
2 | Fe-oxides | 40.60 | 0.70 | 3.40 | 10.33 | 2.31 | 35.79 | 0.33 | 3.46 | ||
3 | Si-Al | 60.96 | 0.41 | 1.08 | 27.52 | 0.53 | 0.24 | 0.04 | 0.01 | ||
4 | Ca-Ti-enriched Al-Si | 58.76 | 17.09 | 18.18 | 8.43 | 2.01 | 0.17 | 0.94 | 0.01 | ||
5 | Al-Si | 51.41 | 4.62 | 4.53 | 5.78 | 0.19 | 4.68 | 0.78 | 0.81 | ||
6 | Si-Al | 62.47 | 0.71 | 5.32 | 27.04 | 2.42 | 0.36 | 0.44 | 0.20 | 0.02 | |
7 | Ca-enriched Al-Si | 63.34 | 0.15 | 0.43 | 27.74 | 10.67 | 0.16 | 0.02 | 0.01 | ||
8 | SiO2 | 39.06 | 0.36 | 53.30 | 0.43 | 0.67 | 0.01 | 0.01 | |||
9 | Fe-oxides | 51.74 | 0.61 | 4.43 | 11.32 | 2.56 | 0.68 | 23.08 | 0.39 | 2.04 | |
10 | Fe-oxides | 40.57 | 1.76 | 3.69 | 4.19 | 50.00 | 0.48 | 13.55 | |||
11 | SiO2 | 60.96 | 0.41 | 1.08 | 21.53 | 0.18 | 0.24 | 0.04 | 0.01 | ||
12 | Quartz | 58.21 | 1.05 | 0.69 | 31.21 | 0.53 | 1.64 | 3.41 | 0.03 | 0.16 |
ICP-MS | Laser Ablation System | ||
---|---|---|---|
ICP-MS Type | PQ-MS Elite | Laser type | LSPC 193 SS |
RF Power | 1500 W | Wavelength | 193 nm |
Scan mode | E-scan | Energy | 70 mJ |
Cool gas flow (Ar) | 16.05 L/min | Frequency | 10 Hz |
Auxiliary gas flow (Ar) | 0.95 L/min | Gas flow (He) | 0.8 L/min(He) |
Carrier gas flow (Ar) | 0.93 L/min | Spot size | 32 μm |
Num | Phase | Li | V | Cr | Co | Ni | Cu | Zn | Rb | Sr | Zr | Nb | Cs | Ba | Hf | Ta | Pb | Th | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Fe-enriched Al-Si | 55.77 | 53.70 | 44.24 | 487.49 | 433.83 | 108.03 | 35.70 | 4.86 | 1696.89 | 84.62 | 17.25 | 0.96 | 301.88 | 2.10 | 1.15 | 8.41 | 15.40 | 9.14 |
2 | Si-Al | 47.68 | 60.33 | 46.82 | 8.59 | 23.26 | 21.81 | 9.11 | 7.82 | 2015.32 | 890.82 | 31.75 | 1.04 | 942.07 | 21.51 | 2.03 | 12.44 | 23.43 | 6.67 |
3 | Ca-Ti-enriched Al-Si | 35.07 | 946.10 | 631.09 | 86.94 | 144.71 | 101.81 | 108.81 | 46.16 | 6162.41 | 174.29 | 65.83 | 5.77 | 817.24 | 5.57 | 2.38 | 60.22 | 86.58 | 46.32 |
4 | Al-Si | 297.20 | 15.16 | 14.51 | 7.55 | 15.36 | 28.34 | 11.92 | 19.55 | 306.77 | 10.34 | 1.50 | 1.63 | 122.15 | 0.34 | 0.12 | 14.79 | 2.33 | 0.93 |
5 | Si-Al | 22.12 | 2.82 | 6.32 | 1.61 | 18.52 | 8.51 | 5.90 | 29.31 | 349.55 | 0.60 | 0.16 | 0.17 | 109.88 | 0.03 | 0.03 | 2.46 | 0.15 | 0.05 |
6 | Ca-enriched Al-Si | 16.01 | 68.09 | 53.49 | 28.38 | 36.05 | 17.85 | 5.66 | 3.43 | 1363.97 | 61.54 | 10.16 | 0.17 | 301.90 | 1.66 | 0.66 | 1.02 | 11.74 | 3.71 |
7 | SiO2 | 8.34 | 3.88 | 8.82 | 2.18 | 25.70 | 7.50 | 5.56 | 0.67 | 0.23 | 0.61 | 0.03 | 0.21 | 0.92 | 0.09 | 0.01 | 0.08 | 0.02 | 0.02 |
8 | Fe-oxides | 39.56 | 43.87 | 70.17 | 339.64 | 1157.04 | 48.56 | 121.78 | 9.30 | 1605.27 | 54.35 | 7.87 | 0.79 | 384.96 | 1.65 | 0.61 | 15.84 | 22.27 | 6.29 |
9 | SiO2 | 792.42 | 903.83 | 2777.77 | 215.42 | 2495.56 | 713.57 | 458.53 | 60.19 | 37.10 | 61.06 | 8.82 | 19.03 | 76.28 | 4.69 | 1.73 | 31.10 | 3.83 | 3.31 |
10 | Quartz | 14.81 | 5.31 | 12.26 | 3.26 | 36.46 | 10.47 | 6.30 | 1.98 | 10.66 | 5.28 | 6.11 | 0.31 | 13.47 | 0.51 | 0.33 | 0.36 | 0.20 | 0.41 |
11 | Feed coal | 5.28 | 20.06 | 22.16 | 9.53 | 10.80 | 8.98 | 10.57 | 13.19 | 408.37 | 25.30 | 2.60 | 1.27 | 116.26 | 0.72 | 0.33 | 5.28 | 3.07 | 1.15 |
12 | Fly ash | 42.84 | 133.10 | 79.35 | 40.94 | 48.93 | 62.94 | 183.78 | 31.87 | 1383.86 | 469.23 | 27.01 | 3.10 | 634.33 | 11.41 | 2.21 | 83.59 | 14.12 | 15.69 |
13 | Magnetic materials | 35.47 | 118.52 | 119.13 | 59.81 | 79.86 | 75.45 | 217.14 | 59.57 | 1232.80 | 318.40 | 19.98 | 4.00 | 805.15 | 7.61 | 1.75 | 53.72 | 22.91 | 12.87 |
14 | Bottom cinder | 39.13 | 87.85 | 69.30 | 32.79 | 38.36 | 32.87 | 28.24 | 46.45 | 1629.98 | 199.33 | 17.67 | 3.19 | 681.49 | 5.96 | 2.07 | 18.49 | 18.99 | 6.05 |
Num | Phase | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Y |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Fe-enriched Al-Si | 51.30 | 106.00 | 10.28 | 39.25 | 7.27 | 1.44 | 5.96 | 1.02 | 6.33 | 1.39 | 3.45 | 0.48 | 3.23 | 0.42 | 38.66 |
2 | Si-Al | 637.53 | 1038.61 | 5.53 | 19.73 | 3.58 | 0.66 | 3.25 | 0.51 | 3.38 | 0.75 | 2.27 | 0.36 | 3.02 | 0.50 | 23.13 |
3 | Ca-Ti-enriched Al-Si | 86.63 | 162.80 | 18.83 | 84.36 | 18.96 | 4.54 | 21.56 | 3.55 | 22.61 | 4.91 | 13.58 | 1.92 | 13.47 | 1.84 | 152.03 |
4 | Al-Si | 93.52 | 187.78 | 1.42 | 5.51 | 1.25 | 0.31 | 2.13 | 0.51 | 3.90 | 0.96 | 2.77 | 0.42 | 2.68 | 0.36 | 28.29 |
5 | Si-Al | 18.40 | 41.21 | 0.09 | 0.45 | 0.11 | 0.05 | 0.11 | 0.02 | 0.10 | 0.02 | 0.05 | 0.01 | 0.05 | 0.01 | 0.33 |
6 | Ca-enriched Al-Si | 59.20 | 97.36 | 10.10 | 37.32 | 7.27 | 1.55 | 4.86 | 0.64 | 3.45 | 0.65 | 1.69 | 0.22 | 1.64 | 0.24 | 19.60 |
7 | SiO2 | 0.16 | 0.21 | 0.04 | 0.13 | 0.12 | 0.04 | 0.18 | 0.02 | 0.17 | 0.02 | 0.05 | 0.01 | 0.09 | 0.02 | 0.09 |
8 | Fe-oxides | 47.68 | 96.26 | 10.57 | 41.86 | 9.21 | 2.14 | 7.98 | 1.41 | 8.75 | 2.05 | 4.71 | 0.68 | 5.06 | 0.64 | 62.94 |
9 | SiO2 | 7.13 | 10.31 | 1.39 | 13.34 | 13.22 | 3.50 | 21.49 | 0.79 | 5.64 | 1.09 | 3.08 | 0.55 | 4.38 | 1.04 | 8.28 |
10 | Quartz | 5.31 | 11.91 | 0.77 | 2.62 | 0.77 | 0.19 | 0.38 | 0.04 | 0.22 | 0.03 | 0.10 | 0.02 | 0.18 | 0.03 | 1.11 |
11 | Feed coal | 10.47 | 20.11 | 2.34 | 9.52 | 1.78 | 0.43 | 1.89 | 0.25 | 1.55 | 0.31 | 0.95 | 0.13 | 0.90 | 0.13 | 9.92 |
12 | Fly ash | 59.02 | 159.28 | 15.29 | 61.82 | 11.99 | 2.48 | 12.19 | 1.71 | 10.20 | 2.00 | 5.91 | 0.80 | 5.38 | 0.76 | 34.65 |
13 | Magnetic materials | 55.38 | 121.12 | 13.20 | 50.47 | 10.08 | 2.27 | 10.62 | 1.53 | 8.72 | 1.79 | 5.21 | 0.73 | 4.76 | 0.70 | 54.40 |
14 | Bottom ash | 66.62 | 144.76 | 15.35 | 60.83 | 11.18 | 2.33 | 11.69 | 1.56 | 9.00 | 1.75 | 5.15 | 0.71 | 4.75 | 0.69 | 50.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Huang, W.; Ao, W. The Distribution of Rare Earth Elements in Coal Fly Ash Determined by LA-ICP-MS and Implications for Its Economic Significance. Sustainability 2025, 17, 275. https://doi.org/10.3390/su17010275
Wang S, Huang W, Ao W. The Distribution of Rare Earth Elements in Coal Fly Ash Determined by LA-ICP-MS and Implications for Its Economic Significance. Sustainability. 2025; 17(1):275. https://doi.org/10.3390/su17010275
Chicago/Turabian StyleWang, Shuliu, Wenhui Huang, and Weihua Ao. 2025. "The Distribution of Rare Earth Elements in Coal Fly Ash Determined by LA-ICP-MS and Implications for Its Economic Significance" Sustainability 17, no. 1: 275. https://doi.org/10.3390/su17010275
APA StyleWang, S., Huang, W., & Ao, W. (2025). The Distribution of Rare Earth Elements in Coal Fly Ash Determined by LA-ICP-MS and Implications for Its Economic Significance. Sustainability, 17(1), 275. https://doi.org/10.3390/su17010275